Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041427

RESUMO

Tandem lesions, which are defined by two or more contiguously damaged nucleotides, are a hallmark of ionizing radiation. Recently, tandem lesions containing 5-formyl-2'-deoxyuridine (5-fdU) flanked by a 5'-8-OxodGuo or Fapy•dG were discovered, and they are more mutagenic in human cells than the isolated lesions. In the current study, we examined replication of these tandem lesions in Escherichia coli. Bypass efficiency of both tandem lesions was reduced by 30-40% compared to the isolated lesions. Mutation frequencies (MFs) of isolated 8-OxodGuo and Fapy•dG were low, and no mutants were isolated from replication of a 5-fdU construct. The types of mutations from 8-OxodGuo were targeted G → T transversion, whereas Fapy•dG predominantly gave G → T and G deletion. 5'-8-OxodGuo-5-fdU also gave exclusively G → T mutation, which was 3-fold and 11-fold greater, without and with SOS induction, respectively, compared to that of an isolated 8-OxodGuo. In mutY/mutM cells, the MF of 8-OxodGuo and 5'-8-OxodGuo-5-fdU increased 13-fold and 7-fold, respectively. The MF of 5'-8-OxodGuo-5-fdU increased 2-fold and 3-fold in Pol II- and Pol IV-deficient cells, respectively, suggesting that these polymerases carry out largely error-free bypass. The MF of 5'- Fapy•dG-5-fdU was similar without (13 ± 1%) and with (16 ± 2%) SOS induction. Unlike the complex mutation spectrum reported earlier in human cells for 5'- Fapy•dG-5-fdU, with G → T as the major type of errors, in E. coli, the mutations were predominantly from deletion of 5-fdU. We postulate that removal of adenine-incorporated opposite 8-OxodGuo by Fpg and MutY repair proteins is partially impaired in the tandem 5'-8-OxodGuo-5-fdU, resulting in an increase in the G → T mutations, whereas a slippage mechanism may be operating in the 5'- Fapy•dG-5-fdU mutagenesis. This study showed that not only are these tandem lesions more mutagenic than the isolated lesions but they may also exhibit different types of mutations in different organisms.

2.
J Biol Chem ; 300(4): 105786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401843

RESUMO

Histone proteins can become trapped on DNA in the presence of 5-formylcytosine (5fC) to form toxic DNA-protein conjugates. Their repair may involve proteolytic digestion resulting in DNA-peptide cross-links (DpCs). Here, we have investigated replication of a model DpC comprised of an 11-mer peptide (NH2-GGGKGLGK∗GGA) containing an oxy-lysine residue (K∗) conjugated to 5fC in DNA. Both CXG and CXT (where X = 5fC-DpC) sequence contexts were examined. Replication of both constructs gave low viability (<10%) in Escherichia coli, whereas TLS efficiency was high (72%) in HEK 293T cells. In E. coli, the DpC was bypassed largely error-free, inducing only 2 to 3% mutations, which increased to 4 to 5% with SOS. For both sequences, semi-targeted mutations were dominant, and for CXG, the predominant mutations were G→T and G→C at the 3'-base to the 5fC-DpC. In HEK 293T cells, 7 to 9% mutations occurred, and the dominant mutations were the semi-targeted G → T for CXG and T → G for CXT. These mutations were reduced drastically in cells deficient in hPol η, hPol ι or hPol ζ, suggesting a role of these TLS polymerases in mutagenic TLS. Steady-state kinetics studies using hPol η confirmed that this polymerase induces G → T and T → G transversions at the base immediately 3' to the DpC. This study reveals a unique replication pattern of 5fC-conjugated DpCs, which are bypassed largely error-free in both E. coli and human cells and induce mostly semi-targeted mutations at the 3' position to the lesion.


Assuntos
Citosina , Citosina/análogos & derivados , DNA , Escherichia coli , Mutação , Humanos , Escherichia coli/metabolismo , Escherichia coli/genética , Células HEK293 , Citosina/metabolismo , Citosina/química , DNA/metabolismo , DNA/química , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Replicação do DNA/efeitos dos fármacos
3.
DNA Repair (Amst) ; 129: 103527, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37467631

RESUMO

Modified nucleotides often hinder and/or decrease the fidelity of DNA polymerases. Tandem lesions, which are comprised of DNA modifications at two contiguous nucleotide positions, can be even more detrimental to genome stability. Recently, tandem lesions containing 5-formyl-2'-deoxyuridine (5fdU) flanked at the 5'-position by 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo) or N-(2-deoxy-α,ß-D-erythropentofuranosyl)-N-(2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy•dG) were discovered. We examined the replication of 5'- 8-OxodGuo-5fdU and 5'-Fapy•dG-5fdU tandem lesions in HEK 293T cells and several polymerase deficient variants by transfecting single-stranded vectors containing them. The local sequence of the tandem lesions encompasses the 273 codon of the p53 gene, a mutational hot-spot. The bypass efficiency and mutation spectra of the tandem lesions were compared to those of the isolated lesions. Replication of weakly mutagenic 5-fdU is little changed when part of the 5'- 8-OxodGuo-5fdU tandem lesion. G → T transversions attributable to 8-OxodGuo increase > 10-fold when the tandem lesion is bypassed. 5'-Fapy•dG-5fdU has a synergistic effect on the error-prone bypass of both lesions. The mutation frequency (MF) of 5'-Fapy•dG-5fdU increases 3-fold compared to isolated Fapy•dG. In addition, a 5'-adjacent Fapy•dG significantly increases the MF of 5fdU. The major mutation, G → T transversions, decrease by almost a third in hPol κ- cells, which is the opposite effect when isolated Fapy•dG in the same sequence context is replicated in HEK 293T cells in the same sequence. Steady-state kinetics indicate that hPol κ contributes to greater G → T transversions by decreasing the specificity constant for dCTP compared to an isolated Fapy•dG. The greater conformational freedom of Fapy•dG compared to 8-OxodGuo and its unusual ability to epimerize at the anomeric center is believed to be the source of the complex effects of 5'-Fapy•dG-5fdU on replication.


Assuntos
DNA Polimerase Dirigida por DNA , Mutagênicos , Humanos , 8-Hidroxi-2'-Desoxiguanosina , Mutagênese , Nucleotídeos , Desoxiguanosina , Dano ao DNA
4.
Chem Res Toxicol ; 36(5): 782-789, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37093780

RESUMO

7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-OxodGuo) is a ubiquitous DNA damage formed by oxidation of 2'-deoxyguanosine. In this study, plasmid DNA containing 8-OxodGuo located in three mutational hot spots of human cancers, codons 248, 249, and 273 of the Tp53 tumor suppressor gene, was replicated in HEK 293T cells. 8-OxodGuo was only a weak block of replication, and the bypass was largely error-free. The mutations (1-5%) were primarily G → T transversions, and the mutation frequency was generally lower than that of the chemically related Fapy·dG. A unique 8-OxodGuo mutation spectrum was observed at each site, as reflected by replication in translesion synthesis (TLS) polymerase- or hPol λ-deficient cells. In codon 248 (CG*G) and 249 (AG*G), where G* denotes 8-OxodGuo, hPol η and hPol ζ carried out largely error-free bypass of the lesion, whereas hPol κ and hPol ι were involved mostly in error-prone TLS, resulting in G → T mutations. 8-OxodGuo bypass in codon 273 (CG*T) was unlike the other two sites, as hPol κ participated in the mostly error-free bypass of the lesion. Yet, in all three sites, including codon 273, simultaneous deficiency of hpol κ and hPol ι resulted in reduction of G → T transversions. This indicates a convincing role of these two TLS polymerases in error-prone bypass of 8-OxodGuo. Although the dominant mutation was G → T in each site, in codon 249, and to a lesser extent in codon 248, significant semi-targeted single-base deletions also occurred, which suggests that 8-OxodGuo can initiate slippage of a base near the lesion site. This study underscores the importance of sequence context in 8-OxodGuo mutagenesis in human cells. It also provides a more comprehensive comparison between 8-OxodGuo and the sister lesion, Fapy·dG. The greater mutagenicity of the latter in the same sequence contexts indicates that Fapy·dG is a biologically significant lesion and biomarker on par with 8-OxodGuo.


Assuntos
Genes p53 , Mutagênicos , Humanos , 8-Hidroxi-2'-Desoxiguanosina , Mutação , Mutagênese , Replicação do DNA , Dano ao DNA , Desoxiguanosina
5.
Chem Res Toxicol ; 35(10): 1655-1675, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35881568

RESUMO

DNA damage by chemicals, radiation, or oxidative stress leads to a mutational spectrum, which is complex because it is determined in part by lesion structure, the DNA sequence context of the lesion, lesion repair kinetics, and the type of cells in which the lesion is replicated. Accumulation of mutations may give rise to genetic diseases such as cancer and therefore understanding the process underlying mutagenesis is of immense importance to preserve human health. Chemical or physical agents that cause cancer often leave their mutational fingerprints, which can be used to back-calculate the molecular events that led to disease. To make a clear link between DNA lesion structure and the mutations a given lesion induces, the field of single-lesion mutagenesis was developed. In the last three decades this area of research has seen much growth in several directions, which we attempt to describe in this Perspective.


Assuntos
Dano ao DNA , Reparo do DNA , DNA/genética , Humanos , Mutagênese , Mutação
6.
J Am Chem Soc ; 144(18): 8054-8065, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35499923

RESUMO

N6-(2-Deoxy-α,ß-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido pyrimidine (Fapy•dG) is a prevalent form of genomic DNA damage. Fapy•dG is formed in greater amounts under anoxic conditions than the well-studied, chemically related 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo). Fapy•dG is more mutagenic in mammalian cells than 8-oxodGuo. A distinctive property of Fapy•dG is facile epimerization, but prior works with Fapy•dG analogues have precluded determining its effect on chemistry. We present crystallographic characterization of natural Fapy•dG in duplex DNA and as the template base for DNA polymerase ß (Pol ß). Fapy•dG adopts the ß-anomer when base paired with cytosine but exists as a mixture of α- and ß-anomers when promutagenically base paired with adenine. Rotation about the bond between the glycosidic nitrogen atom and the pyrimidine ring is also affected by the opposing nucleotide. Sodium cyanoborohydride soaking experiments trap the ring-opened Fapy•dG, demonstrating that ring opening and epimerization occur in the crystalline state. Ring opening and epimerization are facilitated by propitious water molecules that are observed in the structures. Determination of Fapy•dG mutagenicity in wild type and Pol ß knockdown HEK 293T cells indicates that Pol ß contributes to G → T transversions but also suppresses G → A transitions. Complementary kinetic studies have determined that Fapy•dG promotes mutagenesis by decreasing the catalytic efficiency of dCMP insertion opposite Fapy•dG, thus reducing polymerase fidelity. Kinetic studies have determined that dCMP incorporation opposite the ß-anomer is ∼90 times faster than the α-anomer. This research identifies the importance of anomer dynamics, a feature unique to formamidopyrimidines, when considering the incorporation of nucleotides opposite Fapy•dG and potentially the repair of this structurally unusual lesion.


Assuntos
Desoxicitidina Monofosfato , Mutagênicos , 8-Hidroxi-2'-Desoxiguanosina , Animais , DNA/química , Adutos de DNA , Dano ao DNA , Replicação do DNA , Desoxicitidina Monofosfato/metabolismo , Desoxiguanosina , Cinética , Mamíferos/genética , Mamíferos/metabolismo , Mutagênese , Mutagênicos/química , Estresse Oxidativo , Pirimidinas/química
7.
DNA Repair (Amst) ; 108: 103213, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34464900

RESUMO

Fapy•dG and 8-OxodGuo are formed in DNA from a common N7-dG radical intermediate by reaction with hydroxyl radical. Although cellular levels of Fapy•dG are often greater, its effects on replication are less well understood than those of 8-OxodGuo. In this study plasmid DNA containing Fapy•dG in three mutational hotspots of human cancers, codons 248, 249, and 273 of the p53 tumor suppressor gene, was replicated in HEK 293T cells. TLS efficiencies for the Fapy•dG containing plasmids varied from 72 to 89%, and were further reduced in polymerase-deficient cells. The mutation frequency (MF) of Fapy•dG ranged from 7.3 to 11.6%, with G→T and G→A as major mutations in codons 248 and 249 compared to primarily G→T in codon 273. Increased MF in hPol ι-, hPol κ-, and hPol ζ-deficient cells suggested that these polymerases more frequently insert the correct nucleotide dC opposite Fapy•dG, whereas decreased G→A in codons 248 and 249 and reduction of all mutations in codon 273 in hPol λ-deficient cells indicated hPol λ's involvement in Fapy•dG mutagenesis. In vitro kinetic analysis using isolated translesion synthesis polymerases and hPol λ incompletely corroborated the mutagenesis experiments, indicating codependence on other proteins in the cellular milieu. In conclusion, Fapy•dG mutagenesis is dependent on the DNA sequence context, but its bypass by the TLS polymerases is largely error-free.


Assuntos
Adutos de DNA , Formamidas , Furanos , Genes p53 , Pirimidinas , Dano ao DNA , Replicação do DNA , Humanos , Cinética , Mutação , Proteína Supressora de Tumor p53/genética
8.
DNA Repair (Amst) ; 95: 102935, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32721818

RESUMO

6-Nitrochrysene (6-NC) is a potent mutagen in bacteria and carcinogenic in animals. It is the most potent carcinogen ever tested in newborn mouse assay. DNA lesions resulting from 6-NC modification are likely to induce mutations if they are not removed by cellular defense pathways prior to DNA replication. Earlier studies showed that 6-NC-derived C8-2'-deoxyadenosine adduct, N-(dA-8-yl)-6-AC, is very slowly repaired in human cells. In this study, we have investigated replication of N-(dA-8-yl)-6-AC in human embryonic kidney (HEK 293T) cells and the roles of translesion synthesis (TLS) DNA polymerases in bypassing it. Replication of a plasmid containing a single site-specific N-(dA-8-yl)-6-AC adduct in HEK 293 T cells showed that human DNA polymerase (hPol) η and hPol κ played important roles in bypassing the adduct, since TLS efficiency was reduced to 26 % in the absence of these two polymerases compared to 83 % in polymerase-competent HEK 293T cells. The progeny from HEK 293T cells provided 12.7 % mutants predominantly containing A→T transversions. Mutation frequency (MF) was increased to 17.8 % in hPol η-deficient cells, whereas it was decreased to 3.3 % and 3.9 % when the adduct containing plasmid was replicated in hPol κ- and hPol ζ-deficient cells, respectively. The greatest reduction in MF by more than 90 % (to MF 1.2 %) was observed in hPol ζ-knockout cells in which hPol κ was knocked down. Taken together, these results suggest that hPol κ and hPol ζ are involved in the error-prone TLS of N-(dA-8-yl)-6-AC, while hPol η performs error-free bypass.


Assuntos
Crisenos/química , Adutos de DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiadenosinas/química , Adutos de DNA/química , Replicação do DNA , Células HEK293 , Humanos
9.
Chem Res Toxicol ; 33(7): 1997-2005, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32551527

RESUMO

The environmental pollutant 6-nitrochrysene (6-NC) is a potent mutagen and a mammary carcinogen in rats. 6-NC is the most potent carcinogen ever tested in the newborn mouse assay. In mammalian cells, it is metabolically activated by nitroreduction and a combination of ring oxidation and nitroreduction pathways. The nitroreduction pathway yields two major adducts with 2'-deoxyguanosine (dG), one at the C8-position, N-(dG-8-yl)-6-AC, and the other at the exocyclic N2-position, 5-(dG-N2-yl)-6-AC. Here, we report the total synthesis of a site-specific oligonucleotide containing the 6-NC-derived C8 dG adduct, N-(dG-8-yl)-6-AC. Pd-catalyzed Buchwald-Hartwig cross coupling of 6-aminochrysene with protected C8-bromo-dG derivative served as the key reaction to furnish protected N-(dG-8-yl)-6-AC in 56% yield. The monomer for solid-phase DNA synthesis was prepared by its deprotection followed by conversion to the corresponding 5'-O-dimethoxytrityl 3'-phosphoramidite, which was used to synthesize a site-specifically adducted oligonucleotide. After purification and characterization, the adduct-containing oligonucleotide was incorporated into a plasmid and replicated in human embryonic kidney (HEK) 293T cells, which showed that N-(dG-8-yl)-6-AC stalls DNA replication as evidenced by 77% translesion synthesis (TLS) efficiency relative to the control and that the adduct is mutagenic (mutation frequency (MF) 17.8%) inducing largely G→T transversions. We also investigated the roles of several translesion synthesis DNA polymerases in the bypass of N-(dG-8-yl)-6-AC using siRNA knockdown approach. TLS efficiency was reduced in hPol η-, hPol κ-, hPol ζ-, and hREV1-deficient HEK 293T cells to 66%, 45%, 37%, and 32%, respectively. Notably, TLS efficiency was reduced to 18% in cells with concurrent knockdown of hPol κ, hPol ζ, and REV1, suggesting that these three polymerases play critical roles in bypassing N-(dG-8-yl)-6-AC. MF increased to 23.1% and 32.2% in hPol κ- and hREV1-deficient cells, whereas it decreased to 11.8% in hPol ζ-deficient cells. This suggests that hPol κ and hREV1 are involved in error-free TLS of this lesion, whereas hPol ζ performs error-prone bypass.


Assuntos
Crisenos/administração & dosagem , Adutos de DNA , Oligonucleotídeos/administração & dosagem , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Células HEK293 , Humanos
10.
Chem Res Toxicol ; 33(2): 604-613, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31903755

RESUMO

6-Nitrochrysene (6-NC), the most potent carcinogen evaluated by the newborn mouse assay, is metabolically activated by nitroreduction and a combination of ring oxidation and nitroreduction pathways. The nitroreduction pathway yields three major DNA adducts: at the C8 and N2 positions of 2'-deoxyguanosine (dG), N-(dG-8-yl)-6-AC and 5-(dG-N2-yl)-6-AC, and at the C8 position of 2'-deoxyadenosine (dA), N-(dA-8-yl)-6-AC. A nucleotide excision repair assay demonstrated that N-(dA-8-yl)-6-AC is repaired much more slowly than many other bulky DNA adducts, including the other DNA adducts formed by 6-NC. But neither the total synthesis nor evaluation of other biological activities of this dA adduct has ever been reported. Herein, we report a convenient synthesis of the 6-NC-derived dA adduct by employing the Buchwald-Hartwig coupling strategy, which provided a high yield of the protected N-(dA-8-yl)-6-AC. The deprotected nucleoside showed syn conformational preference by NMR spectroscopy. Following DMT protection of the 5'-hydroxyl, N-(dA-8-yl)-6-AC was converted to its 3'-phosphoramidite, which was used to prepare oligonucleotides containing a single N-(dA-8-yl)-6-AC adduct. Circular dichroism spectra of the adducted duplex showed only a slight departure from the B-DNA helix profile of the control duplex. The 15-mer N-(dA-8-yl)-6-AC oligonucleotide was used to construct a single-stranded plasmid vector containing a single adduct, which was replicated in Escherichia coli. Viability of the adducted construct was ∼60% of the control, indicating slower translesion synthesis of the adduct, which increased to nearly 90% upon induction of the SOS functions. Without SOS, the mutation frequency (MF) of the adduct was 5.2%, including 2.9% targeted and 2.3% semi-targeted mutations. With SOS, the targeted MF increased 3-fold to 9.0%, whereas semi-targeted mutation increased only marginally to 3.2%. The major type of targeted mutation was A*→G in both uninduced and SOS-induced cells.


Assuntos
Adutos de DNA/genética , Desoxiadenosinas/genética , Escherichia coli/genética , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos/genética , Adutos de DNA/química , Adutos de DNA/metabolismo , Desoxiadenosinas/química , Desoxiadenosinas/metabolismo , Escherichia coli/metabolismo , Estrutura Molecular , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo
11.
Biochemistry ; 59(4): 417-424, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31860280

RESUMO

Tandem DNA lesions containing two contiguously damaged nucleotides are commonly formed by ionizing radiation. Their effects on replication in mammalian cells are largely unknown. Replication of isolated 2-deoxyribonolactone (L), thymine glycol (Tg), and tandem lesion 5'-LTg was examined in human cells. Although nearly 100% of Tg was bypassed in HEK 293T cells, L was a significant replication block. 5'-LTg was an even stronger replication block with 5% TLS efficiency. The mutation frequency (MF) of Tg was 3.4%, which increased to 3.9% and 4.8% in pol ι- and pol κ-deficient cells, respectively. An even greater increase in the MF of Tg (to ∼5.5%) was observed in cells deficient in both pol κ and pol ζ, suggesting that they work together to bypass Tg in an error-free manner. Isolated L bypass generated 12-18% one-base deletions, which increased as much as 60% in TLS polymerase-deficient cells. The fraction of deletion products also increased in TLS polymerase-deficient cells upon 5'-LTg bypass. In full-length products and in all cell types, dA was preferentially incorporated opposite an isolated L as well as when it was part of a tandem lesion. However, misincorporation opposite Tg increased significantly when it was part of a tandem lesion. In wild type cells, targeted mutations increased about 3-fold to 9.7% and to 17.4, 15.9, and 28.8% in pol κ-, pol ζ-, and pol ι-deficient cells, respectively. Overall, Tg is significantly more miscoding as part of a tandem lesion, and error-free Tg replication in HEK 293T cells requires participation of the TLS polymerases.


Assuntos
Replicação do DNA/efeitos da radiação , Açúcares Ácidos/química , Timina/análogos & derivados , DNA/metabolismo , Dano ao DNA/efeitos da radiação , Reparo do DNA/fisiologia , Reparo do DNA/efeitos da radiação , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/fisiologia , Células HEK293 , Humanos , Mutagênese/efeitos da radiação , Mutagênicos , Nucleotídeos/química , Açúcares Ácidos/efeitos da radiação , Timina/química , Timina/efeitos da radiação , DNA Polimerase iota
12.
J Biol Chem ; 294(27): 10619-10627, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31138652

RESUMO

DNA-protein cross-links can interfere with chromatin architecture, block DNA replication and transcription, and interfere with DNA repair. Here we synthesized a DNA 23-mer containing a site-specific DNA-peptide cross-link (DpC) by cross-linking an 11-mer peptide to the DNA epigenetic mark 5-formylcytosine in synthetic DNA and used it to generate a DpC-containing plasmid construct. Upon replication of the DpC-containing plasmid in HEK 293T cells, approximately 9% of progeny plasmids contained targeted mutations and 5% semitargeted mutations. Targeted mutations included C→T transitions and C deletions, whereas semitargeted mutations included several base substitutions and deletions near the DpC lesion. To identify DNA polymerases involved in DpC bypass, we comparatively studied translesion synthesis (TLS) efficiency and mutagenesis of the DpC in a series of cell lines with TLS polymerase knockouts or knockdowns. Knockdown of either hPol ι or hPol ζ reduced the mutation frequency by nearly 50%. However, the most significant reduction in mutation frequency (50%-70%) was observed upon simultaneous knockout of hPol η and hPol κ with knockdown of hPol ζ, suggesting that these TLS polymerases play a critical role in error-prone DpC bypass. Because TLS efficiency of the DpC construct was not significantly affected in TLS polymerase-deficient cells, we examined a possible role of replicative DNA polymerases in their bypass and determined that hPol δ and hPol ϵ can accurately bypass the DpC. We conclude that both replicative and TLS polymerases can bypass this DpC lesion in human cells but that mutations are induced mainly by TLS polymerases.


Assuntos
Citosina/análogos & derivados , Replicação do DNA , DNA/química , Peptídeos/química , Citosina/química , DNA/metabolismo , Adutos de DNA/química , Adutos de DNA/metabolismo , DNA Polimerase II/metabolismo , DNA Polimerase III/metabolismo , Primers do DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Mutação , Peptídeos/metabolismo
14.
Nucleic Acids Res ; 46(13): 6455-6469, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29905846

RESUMO

5-Formylcytosine (5fC) is an epigenetic DNA modification introduced via TET protein-mediated oxidation of 5-methyl-dC. We recently reported that 5fC form reversible DNA-protein conjugates (DPCs) with histone proteins in living cells (Ji et al. (2017) Angew. Chem. Int. Ed., 56:14130-14134). We now examined the effects of 5fC mediated DPCs on DNA replication. Synthetic DNA duplexes containing site-specific DPCs between 5fC and lysine-containing proteins and peptides were subjected to primer extension experiments in the presence of human translesion synthesis DNA polymerases η and κ. We found that DPCs containing histones H2A or H4 completely inhibited DNA replication, but the replication block was removed when the proteins were subjected to proteolytic digestion. Cross-links to 11-mer or 31-mer peptides were bypassed by both polymerases in an error-prone manner, inducing targeted C→T transitions and -1 deletions. Similar types of mutations were observed when plasmids containing 5fC-peptide cross-links were replicated in human embryonic kidney (HEK) 293T cells. Molecular simulations of the 11-mer peptide-dC cross-links bound to human polymerases η and κ revealed that the peptide fits well on the DNA major groove side, and the modified dC forms a stable mismatch with incoming dATP via wobble base pairing in the polymerase active site.


Assuntos
Citosina/análogos & derivados , Replicação do DNA , DNA/química , Mutação , Citosina/química , DNA Polimerase Dirigida por DNA/metabolismo , Células HEK293 , Histonas , Humanos , Simulação de Dinâmica Molecular , Peptídeos
16.
Int J Mol Sci ; 19(4)2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29570697

RESUMO

A large number of chemicals and several physical agents, such as UV light and γ-radiation, have been associated with the etiology of human cancer. Generation of DNA damage (also known as DNA adducts or lesions) induced by these agents is an important first step in the process of carcinogenesis. Evolutionary processes gave rise to DNA repair tools that are efficient in repairing damaged DNA; yet replication of damaged DNA may take place prior to repair, particularly when they are induced at a high frequency. Damaged DNA replication may lead to gene mutations, which in turn may give rise to altered proteins. Mutations in an oncogene, a tumor-suppressor gene, or a gene that controls the cell cycle can generate a clonal cell population with a distinct advantage in proliferation. Many such events, broadly divided into the stages of initiation, promotion, and progression, which may occur over a long period of time and transpire in the context of chronic exposure to carcinogens, can lead to the induction of human cancer. This is exemplified in the long-term use of tobacco being responsible for an increased risk of lung cancer. This mini-review attempts to summarize this wide area that centers on DNA damage as it relates to the development of human cancer.


Assuntos
Dano ao DNA/genética , Mutagênese/fisiologia , Neoplasias/genética , Adutos de DNA/genética , Humanos , Mutagênese/genética
17.
Langmuir ; 33(49): 14184-14194, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29144756

RESUMO

Liquid phase exfoliation of graphite in six different animal sera and evaluation of its toxicity are reported here. Previously, we reported the exfoliation of graphene using proteins, and here we extend this approach to complex animal fluids. A kitchen blender with a high-turbulence flow gave high quality and maximum exfoliation efficiency in all sera tested, when compared to the values found with shear and ultrasonication methods. Raman spectra and electron microscopy confirmed the formation of three- or four-layer, submicrometer size graphene, independent of the serum used. Graphene prepared in serum was directly transferred to cell culture media without post-treatments. Contrary to many reports, a nanotoxicity study of this graphene fully dispersed to human embryonic kidney cells, human lung cancer cells, and nematodes (Caenorhabditis elegans) showed no acute toxicity for up to 7 days at various doses (50-500 µg/mL), but prolonged exposure at higher doses (300-500 µg/mL, 10-15 days) showed cytotoxicity to cells (∼95% death) and reproductive toxicity to C. elegans (5-10% reduction in brood size). The origin of toxicity was found to be due to the highly fragmented smaller graphene sheets (<200 nm), while the larger sheets were nontoxic (50-300 µg/mL dose). In contrast, graphene produced with sodium cholate as the mediator has been found to be cytotoxic to these cells at these dosages. We demonstrated the toxicity of liquid phase exfoliated graphene is attributed to highly fragmented fractions or nonbiocompatible exfoliating agents. Thus, low-toxicity graphene/serum suspensions are produced by a facile method in biological media, and this approach may accelerate the much-anticipated development of graphene for biological applications.


Assuntos
Grafite/química , Animais , Caenorhabditis elegans , Humanos , Oxirredução , Soro
18.
Adv Energy Mater ; 7(17)2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-29104523

RESUMO

Nearly all implantable bioelectronics are powered by bulky batteries which limit device miniaturization and lifespan. Moreover, batteries contain toxic materials and electrolytes that can be dangerous if leakage occurs. Herein, an approach to fabricate implantable protein-based bioelectrochemical capacitors (bECs) employing new nanocomposite heterostructures in which 2D reduced graphene oxide sheets are interlayered with chemically modified mammalian proteins, while utilizing biological fluids as electrolytes is described. This protein-modified reduced graphene oxide nanocomposite material shows no toxicity to mouse embryo fibroblasts and COS-7 cell cultures at a high concentration of 1600 µg mL-1 which is 160 times higher than those used in bECs, unlike the unmodified graphene oxide which caused toxic cell damage even at low doses of 10 µg mL-1. The bEC devices are 1 µm thick, fully flexible, and have high energy density comparable to that of lithium thin film batteries. COS-7 cell culture is not affected by long-term exposure to encapsulated bECs over 4 d of continuous charge/discharge cycles. These bECs are unique, protein-based devices, use serum as electrolyte, and have the potential to power a new generation of long-life, miniaturized implantable devices.

19.
Curr Protoc Nucleic Acid Chem ; 69: 4.73.1-4.73.15, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28628210

RESUMO

This unit describes the detailed procedure in five parts for the synthesis of the C8-2'-deoxyguanosine-3-aminobenzanthrone adduct located in a desired site in an oligonucleotide. The synthesis of the protected 2'-deoxyguanosine, O6 -benzyl-N2 -DMTr-3'-5'-bisTBDMS-C8-Br-2'-deoxyguanosine, is described in the first part. The synthesis of the reduced carcinogen 3-aminobenzanthrone is detailed in part two. The third part outlines the key step of the adduct formation between the reduced carcinogen and the protected nucleoside by a palladium-catalyzed cross coupling reaction. The final two parts describe phosphoramidite synthesis from the nucleoside-carcinogen adduct followed by its site-specific incorporation into DNA by solid-phase oligonucleotide synthesis. The adducted oligonucleotides are purified by reversed-phase HPLC and characterized by mass spectrometry. © 2017 by John Wiley & Sons, Inc.


Assuntos
Benzo(a)Antracenos/química , Carcinógenos/química , Desoxiguanosina/química , Oligodesoxirribonucleotídeos/síntese química , Automação , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Oligodesoxirribonucleotídeos/química , Espectroscopia de Prótons por Ressonância Magnética
20.
RSC Adv ; 7(47): 29563-29574, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29403641

RESUMO

We report a general and modular approach for the synthesis of multi enzyme-polymer conjugates (MECs) consisting of five different enzymes of diverse isoelectric points and distinct catalytic properties conjugated within a single universal polymer scaffold. The five model enzymes chosen include glucose oxidase (GOx), acid phosphatase (AP), lactate dehydrogenase (LDH), horseradish peroxidase (HRP) and lipase (Lip). Poly(acrylic acid) (PAA) is used as the model synthetic polymer scaffold that will covalently conjugate and stabilize multiple enzymes concurrently. Parallel and sequential synthetic protocols are used to synthesise MECs, 5-P and 5-S, respectively. Also, five different single enzyme-PAA conjugates (SECs) including GOx-PAA, AP-PAA, LDH-PAA, HRP-PAA and Lip-PAA are synthesized. The composition, structure and morphology of MECs and SECs are confirmed by agarose gel electrophoresis, dynamic light scattering, circular dichroism spectroscopy and transmission electron microscopy. The bioreactor comprising MEC functions as a single biocatalyst can carry out at least five different or orthogonal catalytic reactions by virtue of the five stabilized enzymes, which has never been achieved to-date. Using activity assays relevant for each of the enzymes, for example AP, the specific activity of AP at room temperature and 7.4 pH in PB is determined and set at 100%. Interestingly, MECs 5-P and 5-S show specific activities of 1800% and 600%, respectively, compared to 100% specific activity of AP at room temperature (RT). The catalytic efficiencies of 5-P and 5-S are 1.55 × 10-3 and 1.68 × 10-3, respectively, compared to 9.11 × 10-5 for AP under similar RT conditions. Similarly, AP relevant catalytic activities of 5-P and 5-S at 65 °C show 100 and 300%, respectively, relative to native AP activity at RT as the native AP is catalytically inactive at 65 °C The catalytic activity trends suggest: (1) MECs show enhanced catalytic activities compared to native enzymes under similar assay conditions and (2) 5-S is better suited for high temperature biocatalysis, while both 5-S and 5-P are suitable for room temperature biocatalysis. Initial cytotoxicity results show that these MECs are non-lethal to human cells including human embryonic kidney [HEK] cells when treated with doses of 0.01 mg mL-1 for 72 h. This cytotoxicity data is relevant for future biological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...