Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(39)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38906131

RESUMO

Considering the low-energy model of tilted Weyl semimetal, we study the electronic transmission through a periodically driven quantum well, oriented in the transverse direction with respect to the tilt. We adopt the formalism of Floquet scattering theory and investigate the emergence of Fano resonances as an outcome of matching between the Floquet sidebands and quasi-bound states. The Fano resonance energy changes linearly with the tilt strength suggesting the fact that tilt-mediated part of quasi-bound states energies depends on the above factor. Given a value of momentum parallel (perpendicular) to the tilt, we find that the energy gap between two Fano resonances, appearing for two adjacent values of transverse (collinear) momentum with respect to the tilt direction, is insensitive (sensitive) to the change in the tilt strength. Such a coupled (decoupled) behavior of tilt strength and the collinear (transverse) momentum can be understood from the tilt-mediated and normal parts of the quasi-bound state energies inside the potential well. We vary the other tilt parameters and chirality of the Weyl points to conclusively verify the exact form of the tilt-mediated part of the quasi-bound state energy that is the same as the tilt term in the static dispersion. The tilt orientation can significantly alter the transport in terms of evolution of Fano resoance energy with tilt momentum. We analytically find the explicit form of the bound state energy that further supports all our numerical findings. Our work paves the way to probe the tilt-mediated part of quasi-bound state energy to understand the complex interplay between the tilt and Fano resonance.

2.
J Phys Condens Matter ; 33(4)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32947280

RESUMO

We study the effect of a perpendicular magnetic fieldBon a multinode Weyl semimetal (mWSM) of arbitrary integer monopole chargen, with the two Weyl multinodes separated ink-space. Besides type-I mWSMs, there exist type-II mWSMs which are characterized by the tilted minimal dispersion for low-energy excitations; the Weyl points in type-II mWSMs are still protected crossings but appear at the contact of the electron and hole pockets, after the Lifshitz transition. We find that the presence of a perpendicular magnetic field quantizes the occupation pockets due to the presence of Fermi tubes. In this theory, the Hilbert space is spanned by a set ofnchiral degenerate ground states, and a countably infinite number of particle-hole symmetric Landau levels (LLs). We calculate the Hall conductivity for the tilt-symmetric case of type-I mWSM using the Kubo formula, in the zero-frequency (DC) limit, and recover the well-known vacuum contribution. We compute the Fermi surface corrections and show that the expression generalizes from the formula for elementary (n= 1) type-I WSMs. We derive an expression for the type-II mWSM Hall conductivity, which is bounded by a LL cutoff introduced on physical grounds. Interestingly, we find that the anomalous vacuum Hall conductivity is vanishing in the type-II phase at all temperatures. The corresponding thermal Hall and Nernst conductivities are evaluated and characterized for both phases. The qualitative and quantitative observations presented here may serve in the characterization of generic mWSMs of both types.

3.
Sci Rep ; 7: 45016, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28337992

RESUMO

We study the quantum capacitance in a topological insulator thin film system magnetized in the in-plane direction in the presence of an out-of-plane magnetic field and hexagonal warping. To first order, the modification in quantum capacitance due to hexagonal warping compared to the clean case, where both the in-plane magnetization and hexagonal warping are absent, is always negative, and increases in magnitude monotonically with the energy difference from the charge neutrality point. In contrast, the change in the quantum capacitance due to in-plane magnetization oscillates with the energy in general, except when a certain relation between the inter-surface coupling, out of plane Zeeman energy splitting and magnetic field strength is satisfied. In this special case, the quantum capacitance remains unchanged by the in-plane magnetization for all energies.

4.
Phys Rev Lett ; 116(14): 144801, 2016 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-27104712

RESUMO

We have proposed a unified framework towards the dynamics of optical and electron vortex beams from the perspective of the geometric phase and the associated Hall effects. The unification is attributed to the notion that the spin degrees of freedom of a relativistic particle, either massive or massless, are associated with a vortex line. Based on a cylindrical coordinate formulation, which leads to a local vortex structure related to orbital angular momentum (OAM), it can be shown that, when electron vortex beams (EVBs) move in an external electric field, paraxial beams give rise to an OAM Hall effect, and nonparaxial beams with tilted vortices initiate a spin Hall effect in free space as well as in an external field. A similar analysis reveals that the paraxial optical vortex beams (OVBs) in an inhomogeneous medium induce an OAM Hall effect, whereas nonparaxial beams with tilted vortices drive the spin Hall effect. Moreover, both OVBs and EVBs with tilted vortices give rise to OAM states with an arbitrary fractional value.

5.
Phys Rev Lett ; 115(19): 194801, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588389

RESUMO

The orbital angular momentum Hall effect and the spin Hall effect of electron vortex beams (EVBs) have been studied for the EVBs interacting with a laser field. In the scenario of a paraxial beam, the cumulative effect of the orbit-orbit interaction of EVBs and laser fields drives the orbital Hall effect, which in turn produces a shift of the center of the beam from that of the field-free case towards the polarization axis of the photons. In addition, for nonparaxial beams one can also perceive a similar shift of the center of the beam owing to the spin Hall effect involving spin-orbit interaction. Our analysis suggests that the shift in the paraxial beams will always be larger than that in the nonparaxial beams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...