Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Case Rep Oncol ; 16(1): 249-255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37092120

RESUMO

Locally advanced cholangiocarcinoma has a poor prognosis, with long-term survival only for patients where complete surgical resection is achieved. Median overall survival with chemotherapy alone is less than 1 year. Novel strategies combining conventional chemotherapy and radiotherapy followed by targeted agents can lead to durable treatment responses and are applicable to cholangiocarcinoma management. Pediatric cholangiocarcinoma is exceedingly rare, with an estimate of 15-22 cases reported in the last 40 years. As such, no standard therapeutic regimen exists. We present a case of a 16-year-old previously healthy patient with unresectable cholangiocarcinoma whose tumor genetic sequencing revealed a novel, actionable neuregulin-1 (NRG1) gene translocation. The patient underwent standard systemic chemotherapy with gemcitabine and cisplatin followed by hypofractionated proton radiation therapy for local control. The patient then started an oral pan-ERBB (erythroblastic B receptor tyrosine kinases including ErbB1/EGFR, ErbB2/HER2, ErbB3/HER3, ErbB4/HER4) family inhibitor as a maintenance medication, remaining with stable disease and excellent quality of life for over 2 years. This case highlights a novel NRG1 fusion in a rare clinical entity that provided an opportunity to utilize a multimodal therapeutic strategy in the pediatric setting.

3.
JCO Precis Oncol ; 6: e2100451, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35544730

RESUMO

PURPOSE: Profiling of pediatric cancers through deep sequencing of large gene panels and whole exomes is rapidly being adopted in many clinical settings. However, the most impactful approach to genomic profiling of pediatric cancers remains to be defined. METHODS: We conducted a prospective precision medicine trial, using whole-exome sequencing of tumor and germline tissue and whole-transcriptome sequencing (RNA Seq) of tumor tissue to characterize the mutational landscape of 127 tumors from 126 unique patients across the spectrum of pediatric brain tumors, hematologic malignancies, and extracranial solid tumors. RESULTS: We identified somatic tumor alterations in 121/127 (95.3%) tumor samples and identified cancer predisposition syndromes on the basis of known pathogenic or likely pathogenic germline mutations in cancer predisposition genes in 9/126 patients (7.1%). Additionally, we developed a novel scoring system for measuring the impact of tumor and germline sequencing, encompassing therapeutically relevant genomic alterations, cancer-related germline findings, recommendations for treatment, and refinement of risk stratification or prognosis. At least one impactful finding from the genomic results was identified in 108/127 (85%) samples sequenced. A recommendation to consider a targeted agent was provided for 82/126 (65.1%) patients. Twenty patients ultimately received therapy with a molecularly targeted agent, representing 24% of those who received a targeted agent recommendation and 16% of the total cohort. CONCLUSION: Paired tumor/normal whole-exome sequencing and tumor RNA Seq of de novo or relapsed/refractory tumors was feasible and clinically impactful in high-risk pediatric cancer patients.


Assuntos
Antineoplásicos , Neoplasias , Criança , Genômica/métodos , Mutação em Linhagem Germinativa/genética , Humanos , Neoplasias/tratamento farmacológico , Estudos Prospectivos , Sequenciamento do Exoma
4.
Acta Med Acad ; 51(3): 217-231, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36799315

RESUMO

In the present review, we briefly discuss the breakthrough advances in precision medicine using a tumor-agnostic approach and focus on BRAF treatment modalities, the mechanisms of resistance and the diagnostic approach in cancers with BRAF mutations. Tumor-type agnostic drug therapies work across cancer types and present a significant novel shift in precision cancer medicine. They are the consequence of carefully designed clinical trials that showed the value of tumor biomarkers, not just in diagnosis but in therapy guidance. Six tumor-agnostic drugs (with seven indications) have been approved through October 2022 by FDA. The first tumor-agnostic treatment modality was pembrolizumab for MSI-H/dMMR solid tumors, approved in 2017. This was followed by approvals of larotrectinib and entrectinib for cancers with NTRK fusions without a known acquired resistance mutation. In 2020, pembrolizumab was approved for all TMB-high solid cancers, while a PD-L1 inhibitor dostarlimab-gxly was approved for dMMR solid cancers in 2021. A combination of BRAF/MEK inhibitors (dabrafenib/trametinib) was approved as a tumor-agnostic therapy in June 2022 for all histologic types of solid metastatic cancers harboring BRAFV600E mutations. In September 2022, RET inhibitor selpercatinib was approved for solid cancers with RET gene fusions. CONCLUSION: Precision cancer medicine has substantially improved cancer diagnostics and treatment. Tissue type-agnostic drug therapies present a novel shift in precision cancer medicine. This approach rapidly expands to provide treatments for patients with different cancers harboring the same molecular alteration.


Assuntos
Neoplasias Encefálicas , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Mutação , Medicina de Precisão
5.
Oncotarget ; 12(18): 1836-1847, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34504655

RESUMO

PURPOSE: We present seven cases of advanced cancer patients who initially underwent tumor testing utilizing smaller, panel-based tests, followed by a variety of therapeutic treatments which ultimately resulted in progression of their disease. These cases demonstrate the value of utilizing WES/RNA seq and characterization following disease progression in these patients and the determination of clinically targetable alterations as well as acquired resistance mutations. MATERIALS AND METHODS: All patients are part of an IRB approved observational study. WES and RNA sequencing were performed, using GEM ExTra® on tumor and blood samples obtained during routine clinical care. To accurately determine somatic versus germline alterations the test was performed with paired normal testing from peripheral blood. RESULTS: The presented cases demonstrate the clinical impact of actionable findings uncovered using GEM ExTra® in patients with advanced disease who failed many rounds of treatment. Unique alterations were identified resulting in newly identified potential targeted therapies, mechanisms of resistance, and variation in the genomic characterization of the primary versus the metastatic tumor. CONCLUSIONS: Taken together our results demonstrate that GEM ExTra® maximizes detection of actionable mutations, thus allowing for appropriate treatment selection for patients harboring both common and rare genomic alterations.

6.
Oncotarget ; 12(8): 726-739, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33889297

RESUMO

We developed and analytically validated a comprehensive genomic profiling (CGP) assay, GEM ExTra, for patients with advanced solid tumors that uses Next Generation Sequencing (NGS) to characterize whole exomes employing a paired tumor-normal subtraction methodology. The assay detects single nucleotide variants (SNV), indels, focal copy number alterations (CNA), TERT promoter region, as well as tumor mutation burden (TMB) and microsatellite instability (MSI) status. Additionally, the assay incorporates whole transcriptome sequencing of the tumor sample that allows for the detection of gene fusions and select special transcripts, including AR-V7, EGFR vIII, EGFRvIV, and MET exon 14 skipping events. The assay has a mean target coverage of 180X for the normal (germline) and 400X for tumor DNA including enhanced probe design to facilitate the sequencing of difficult regions. Proprietary bioinformatics, paired with comprehensive clinical curation results in reporting that defines clinically actionable, FDA-approved, and clinical trial drug options for the management of the patient's cancer. GEM ExTra demonstrated analytic specificity (PPV) of > 99.9% and analytic sensitivity of 98.8%. Application of GEM ExTra to 1,435 patient samples revealed clinically actionable alterations in 83.9% of reports, including 31 (2.5%) where therapeutic recommendations were based on RNA fusion findings only.

7.
PLoS One ; 16(4): e0248097, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33826614

RESUMO

Although combination BRAF and MEK inhibitors are highly effective for the 40-50% of cutaneous metastatic melanomas harboring BRAFV600 mutations, targeted agents have been ineffective for BRAFV600wild-type (wt) metastatic melanomas. The SU2C Genomics-Enabled Medicine for Melanoma Trial utilized a Simon two-stage optimal design to assess whether comprehensive genomic profiling improves selection of molecular-based therapies for BRAFV600wt metastatic melanoma patients who had progressed on standard-of-care therapy, which may include immunotherapy. Of the response-evaluable patients, binimetinib was selected for 20 patients randomized to the genomics-enabled arm, and nine were treated on the alternate treatment arm. Response rates for 27 patients treated with targeted recommendations included one (4%) partial response, 18 (67%) with stable disease, and eight (30%) with progressive disease. Post-trial genomic and protein pathway activation mapping identified additional drug classes that may be considered for future studies. Our results highlight the complexity and heterogeneity of metastatic melanomas, as well as how the lack of response in this trial may be associated with limitations including monotherapy drug selection and the dearth of available single and combination molecularly-driven therapies to treat BRAFV600wt metastatic melanomas.


Assuntos
Benzimidazóis/administração & dosagem , Genômica , Melanoma , Proteínas Proto-Oncogênicas B-raf , Neoplasias Cutâneas , Adulto , Idoso , Feminino , Humanos , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Projetos Piloto , Estudos Prospectivos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Melanoma Maligno Cutâneo
8.
J Mol Diagn ; 17(5): 487-95, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26320869

RESUMO

The HER2 (official name ERBB2) gene encodes a membrane receptor in the epidermal growth factor receptor family amplified and overexpressed in adenocarcinoma. Activating mutations also occur in several cancers. We report mutation analyses of the HER2 kinase domain in 7497 histologically diverse cancers. Forty-five genes, including the kinase domain of HER2 with HER2 IHC and dual in situ hybridization, were analyzed in tumors from 7497 patients with cancer, including 850 breast, 770 colorectal, 910 non-small cell lung, 823 uterine or cervical, 1372 ovarian, and 297 pancreatic cancers, as well as 323 melanomas and 2152 other solid tumors. Sixty-nine HER2 kinase domain mutations were identified in tumors from 68 patients (approximately 1% of all cases, ranging from absent in sarcomas to 4% in urothelial cancers), which included previously published activating mutations and 13 novel mutations. Fourteen cases with coexisting HER2 mutation and amplification and/or overexpression were identified. Fifty-two of 68 patients had additional mutations in other analyzed genes, whereas 16 patients (23%) had HER2 mutations identified as the sole driver mutation. HER2 mutations coexisted with HER2 gene amplification and overexpression and with mutations in other functionally important genes. HER2 mutations were identified as the only driver mutation in a significant proportion of solid cancers. Evaluation of anti-HER2 therapies in nonamplified, HER2-mutated cancers is warranted.


Assuntos
Mutação , Neoplasias/genética , Fosfotransferases/química , Receptor ErbB-2/genética , Substituição de Aminoácidos , Domínio Catalítico/genética , Estudos de Coortes , Análise Mutacional de DNA/métodos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Fosfotransferases/genética , Receptor ErbB-2/química
10.
Clin Genitourin Cancer ; 13(1): e37-49, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25178641

RESUMO

BACKGROUND: Infiltrating UC represents the second most common genitourinary malignancy. Advanced UC has a poor prognosis and new treatments are needed. Molecular profiling of UC might identify biomarkers associated with targeted therapies or chemotherapeutics, providing physicians with new treatment options. MATERIALS AND METHODS: Five hundred thirty-seven cases of locally advanced or metastatic UC of the bladder, 74 nonbladder, and 55 nonurothelial bladder cancers were profiled using mutation analysis, in situ hybridization, and immunohistochemistry assays for biomarkers predictive of therapy response. RESULTS: Molecular profiling of UC showed high overexpression of topoisomerase 2α, common phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha and/or phosophatase and tensin homolog (PTEN) alterations in nonbladder (27%) and bladder UC (21%), and rare gene mutations across subtypes. Compared with nonbladder, bladder UC consistently exhibited more frequent abnormal protein expression, including HER2 (10% vs. 3%; P = .04), tyrosine protein c-Kit receptor kinases (11% vs. 5%), c-Met proto-oncogene, receptor tyrosine kinases (25% vs. 8%), androgen receptor (16% vs. 6%), O(6)-methylguanine-methyltransferase (63% vs. 43%), ribonucleotide reductase M1 (32% vs. 11%), Serum protein acidic and rich in cysteine (SPARC) (69% vs. 33%), and topoisomerase 1 (63% vs. 39%). Bladder UC also exhibited increased amplification of HER2 (12% vs. 2%; P = .06). CONCLUSION: Comprehensive molecular profiling of UC identified a large number of biomarkers aberrations that might direct treatment in conventional chemotherapies and targeted therapies, not currently recommended in this population. As a group, bladder UC exhibited higher levels of actionable biomarkers, suggesting that UC from different primary sites and non-UC are driven by different molecular pathways. These differences could have clinical implications resulting in different treatment regimens depending on the site of origin of UC.


Assuntos
Biomarcadores Tumorais/genética , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias da Bexiga Urinária/genética , Neoplasias Urogenitais/genética , Idoso , Feminino , Amplificação de Genes , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica , Proto-Oncogene Mas , Neoplasias da Bexiga Urinária/patologia , Neoplasias Urogenitais/patologia
12.
Cancer Epidemiol Biomarkers Prev ; 23(12): 2965-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25392179

RESUMO

Cancer cells expressing PD-1 ligands (PD-L1/PD-L2) inhibit immune-modulatory T-cell activation facilitating disease progression. Preliminary clinical trials exploring interruption of PD-1/PD-L1 signaling showed benefit in several cancer types. We analyzed the distribution of PD-1-positive tumor-infiltrating lymphocytes (TIL) and cancer cells' expression of PD-L1 in a molecularly profiled cohort of 437 malignancies (380 carcinomas, 33 sarcomas, and 24 melanomas). We showed that the presence of PD-1(+) TILs significantly varied among cancer types (from 0% in extraskeletal myxoid chondrosarcomas to 93% in ovarian cancer), and was generally associated with the increased number of mutations in tumor cells (P = 0.029). Cancer cell expression of PD-L1 varied from absent (in Merkel cell carcinomas) to 100% (in chondro- and liposarcomas), but showed the inverse association with the number of detected mutations (P = 0.004). Both PD-1 and PD-L1 expression were significantly higher in triple-negative breast cancers (TNBC) than in non-TNBC (P < 0.001 and 0.017, respectively). Similarly, MSI-H colon cancers had higher PD-1 and PD-L1 expression than the microsatellite stable tumors (P = 0.002 and 0.02, respectively). TP53-mutated breast cancers had significantly higher PD-1 positivity than those harboring other driver mutations (e.g., PIK3CA; P = 0.002). In non-small cell lung cancer, PD-1/PD-L1 coexpression was identified in 8 cases (19%), which lacked any other targetable alterations (e.g., EGFR, ALK, or ROS1). Our study demonstrated the utility of exploring the expression of two potentially targetable immune checkpoint proteins (PD-1/PD-L1) in a substantial proportion of solid tumors, including some aggressive subtypes that lack other targeted treatment modalities.


Assuntos
Neoplasias/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Progressão da Doença , Feminino , Humanos , Masculino , Prognóstico
13.
Oncotarget ; 5(23): 12440-7, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25415047

RESUMO

BACKGROUND: Cancer of unknown primary (CUP) accounts for approximately 3% of all malignancies. Despite extensive laboratory and imaging efforts, the primary site usually cannot be unequivocally confirmed, and the treatment for the most part remains empirical. Recently, identification of common cancer pathway alterations in diverse cancer lineages has offered an opportunity to provide targeted therapies for patients with CUP, irrespective of the primary site. PATIENTS AND METHODS: 1806 cancers of unknown primary were identified among more than 63,000 cases profiled at Caris Life Sciences. Multiplatform profiling of the tumor samples included immunohistochemistry, gene sequencing and in situ hybridization methods in an effort to identify changes in biomarkers that are predictive of drug responses. RESULTS: Biomarkers associated with a potential drug benefit were identified in 96% of cases. Biomarkers identified included those associated with potential benefit in nearly all classes of approved cancer drugs (cytotoxic, hormonal, targeted biological drugs). Additionally, biomarkers associated with a potential lack of benefit were identified in numerous cases, which could further refine the management of patients with CUP. CONCLUSION: Comprehensive biomarker profiling of CUP may provide additional choices in treatment of patients with these difficult to treat malignancies.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos , Neoplasias Primárias Desconhecidas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Imuno-Histoquímica , Hibridização In Situ , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Case Rep Oncol ; 5(1): 154-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22666205

RESUMO

After Taxotere fails, treatment options for metastatic prostate cancer are limited. The three drugs with FDA approval in this setting, Jevtana, Provenge and Zytiga, are associated with median survivals of less than 2 years. In part, the impact on survival is the result of low response rates, indicating a significant proportion of patients exhibiting de novo resistance to these agents. An alternate approach is to let treatment selection be governed by gene expression profiling so that the treatment is tailored to the specific patient. Here, we report a case of metastatic prostate cancer with a dramatic response to treatment selected based on molecular profiling. This patient had failed LHRH agonist, bicalutamide, Taxotere, and doxorubicin. Molecular profiling showed overexpression of the androgen receptor and he had a dramatic response of measurable disease to second-line hormonal therapy with ketoconazole, estrogen and Leukine.

15.
Gynecol Oncol ; 118(3): 220-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20722101

RESUMO

OBJECTIVE: Ovarian cancer retains a poor prognosis among the female gynaecological malignancies. It constitutes about 3% of all malignancies in women and accounts for 5% of all female cancer related deaths. A standard treatment is cytoreductive surgery followed by adjuvant chemotherapy, and re-treatment with platinum based chemotherapy at the time of relapse. In order to improve cisplatin response in ovarian cancer cells, we utilized a high-throughput RNAi screening to identify kinase modulators. METHODS: A high-throughput RNAi screen was performed using a siRNA library targeting 572 kinases to identify potentiators of cisplatin response in the ovarian cancer cell line SKOV3. RESULTS: RNAi screening identified at least 55 siRNAs that potentiated the growth inhibitory effects of cisplatin in SKOV3 cells. Inhibition of ATR and CHK1 resulted in the greatest modulation of cisplatin response. Drug dose response of cisplatin in the presence of siRNA validated the effects of these target genes. To show that the siRNA data could be successfully translated into potential therapeutic strategies, CHK1 was further targeted with small molecule inhibitor PD 407824 in combination with cisplatin. Results showed that treatment of SKOV3 and OVCAR3 cells with CHK1 inhibitor PD 407824 led to sensitization of ovarian cancer cells to cisplatin. CONCLUSIONS: Our data provides kinase targets that could be exploited to design better therapeutics for ovarian cancer patients. We also demonstrate the effectiveness of high-throughput RNAi screening as a tool for identifying sensitizing targets to known and established chemotherapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/enzimologia , Proteínas Quinases/genética , Interferência de RNA , Carbazóis/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Feminino , Humanos , Neoplasias Ovarianas/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/genética
16.
Anticancer Drugs ; 21(5): 532-42, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20216307

RESUMO

Despite widespread use of anti-CD20 antibodies as therapeutic agents for oncologic and autoimmune indications, precise descriptions of killing mechanisms remain incomplete. Complement-dependent cytolysis and antibody-dependent cell-mediated cytotoxicity are indicated as modes of target cell depletion; however, the importance of apoptosis induction is controversial. Studies showing that the therapeutic anti-CD20 antibody rituximab (Rituxan) mediates apoptosis of tumor cell targets in vitro after cross-linking by anti-Fc reagents suggest that enhancement strategies applied to Fc-independent activities for anti-CD20 antibodies could improve therapeutic efficacy. An anti-CD20 antibody designated DXL625, with autophilic properties such as increased binding avidity, is shown here to independently induce caspase-mediated apoptosis of an established B-cell lymphoma line in vitro. Depletion of membrane cholesterol or chelation of extracellular calcium abrogated the pro-apoptotic activity of DXL625, indicating that intact lipid rafts and calcium are required for this activity. The Fc-mediated complement-dependent and antibody-dependent cellular killing mechanisms are maintained by DXL625 despite conjugation of the parental Rituxan antibody to the autophilic DXL peptide sequence. This study shows a strategy for improving anti-CD20 immunotherapy by endowing therapeutic antibodies with self-interacting properties.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Anticorpos Monoclonais Murinos , Antígenos CD20/imunologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Rituximab
17.
BMC Genomics ; 11: 25, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20067632

RESUMO

BACKGROUND: Neurofibrillary tangles (NFT), a cardinal neuropathological feature of Alzheimer's disease (AD) that is highly correlated with synaptic loss and dementia severity, appear to be partly attributable to increased phosphorylation of the microtubule stabilizing protein tau at certain AD-related residues. Identifying the kinases involved in the pathologic phosphorylation of tau may provide targets at which to aim new AD-modifying treatments. RESULTS: We report results from a screen of 572 kinases in the human genome for effects on tau hyperphosphorylation using a loss of function, high-throughput RNAi approach. We confirm effects of three kinases from this screen, the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2), the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), and the A-kinase anchor protein 13 (AKAP13) on tau phosphorylation at the 12E8 epitope (serine 262/serine 356). We provide evidence that EIF2AK2 effects may result from effects on tau protein expression, whereas DYRK1A and AKAP13 are likely more specifically involved in tau phosphorylation pathways. CONCLUSIONS: These findings identify novel kinases that phosphorylate tau protein and provide a valuable reference data set describing the kinases involved in phosphorylating tau at an AD-relevant epitope.


Assuntos
Doença de Alzheimer/enzimologia , Proteínas Quinases/análise , RNA Interferente Pequeno/análise , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Testes Genéticos , Genoma Humano , Humanos , Fosforilação , Proteínas Quinases/genética , RNA Interferente Pequeno/genética , Regulação para Cima
18.
Blood ; 115(8): 1594-604, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19996089

RESUMO

A paucity of validated kinase targets in human multiple myeloma has delayed clinical deployment of kinase inhibitors in treatment strategies. We therefore conducted a kinome-wide small interfering RNA (siRNA) lethality study in myeloma tumor lines bearing common t(4;14), t(14;16), and t(11;14) translocations to identify critically vulnerable kinases in myeloma tumor cells without regard to preconceived mechanistic notions. Fifteen kinases were repeatedly vulnerable in myeloma cells, including AKT1, AK3L1, AURKA, AURKB, CDC2L1, CDK5R2, FES, FLT4, GAK, GRK6, HK1, PKN1, PLK1, SMG1, and TNK2. Whereas several kinases (PLK1, HK1) were equally vulnerable in epithelial cells, others and particularly G protein-coupled receptor kinase, GRK6, appeared selectively vulnerable in myeloma. GRK6 inhibition was lethal to 6 of 7 myeloma tumor lines but was tolerated in 7 of 7 human cell lines. GRK6 exhibits lymphoid-restricted expression, and from coimmunoprecipitation studies we demonstrate that expression in myeloma cells is regulated via direct association with the heat shock protein 90 (HSP90) chaperone. GRK6 silencing causes suppression of signal transducer and activator of transcription 3 (STAT3) phosphorylation associated with reduction in MCL1 levels and phosphorylation, illustrating a potent mechanism for the cytotoxicity of GRK6 inhibition in multiple myeloma (MM) tumor cells. As mice that lack GRK6 are healthy, inhibition of GRK6 represents a uniquely targeted novel therapeutic strategy in human multiple myeloma.


Assuntos
Quinases de Receptores Acoplados a Proteína G/metabolismo , Mieloma Múltiplo/enzimologia , RNA Interferente Pequeno , Animais , Linhagem Celular Tumoral , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Quinases de Receptores Acoplados a Proteína G/antagonistas & inibidores , Quinases de Receptores Acoplados a Proteína G/genética , Inativação Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Translocação Genética/efeitos dos fármacos , Translocação Genética/genética
19.
J Transl Med ; 7: 43, 2009 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-19519883

RESUMO

BACKGROUND: Pancreatic cancer retains a poor prognosis among the gastrointestinal cancers. It affects 230,000 individuals worldwide, has a very high mortality rate, and remains one of the most challenging malignancies to treat successfully. Treatment with gemcitabine, the most widely used chemotherapeutic against pancreatic cancer, is not curative and resistance may occur. Combinations of gemcitabine with other chemotherapeutic drugs or biological agents have resulted in limited improvement. METHODS: In order to improve gemcitabine response in pancreatic cancer cells, we utilized a synthetic lethal RNAi screen targeting 572 known kinases to identify genes that when silenced would sensitize pancreatic cancer cells to gemcitabine. RESULTS: Results from the RNAi screens identified several genes that, when silenced, potentiated the growth inhibitory effects of gemcitabine in pancreatic cancer cells. The greatest potentiation was shown by siRNA targeting checkpoint kinase 1 (CHK1). Validation of the screening results was performed in MIA PaCa-2 and BxPC3 pancreatic cancer cells by examining the dose response of gemcitabine treatment in the presence of either CHK1 or CHK2 siRNA. These results showed a three to ten-fold decrease in the EC50 for CHK1 siRNA-treated cells versus control siRNA-treated cells while treatment with CHK2 siRNA resulted in no change compared to controls. CHK1 was further targeted with specific small molecule inhibitors SB 218078 and PD 407824 in combination with gemcitabine. Results showed that treatment of MIA PaCa-2 cells with either of the CHK1 inhibitors SB 218078 or PD 407824 led to sensitization of the pancreatic cancer cells to gemcitabine. CONCLUSION: These findings demonstrate the effectiveness of synthetic lethal RNAi screening as a tool for identifying sensitizing targets to chemotherapeutic agents. These results also indicate that CHK1 could serve as a putative therapeutic target for sensitizing pancreatic cancer cells to gemcitabine.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Carbazóis/farmacologia , Desoxicitidina/análogos & derivados , Inativação Gênica , Neoplasias Pancreáticas/tratamento farmacológico , Interferência de RNA , Idoso , Alcaloides/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Impedância Elétrica , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Transfecção , Gencitabina
20.
J Immunol ; 182(1): 216-24, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19109152

RESUMO

With a 5-year survival rate of <5%, pancreatic cancer is one of the most rapidly fatal malignancies. Current protocols for the treatment of pancreas cancer are not as effective as we desire. In this study, we show that a novel Mucin-1 (MUC1)-based vaccine in combination with a cyclooxygenase-2 inhibitor (celecoxib), and low-dose chemotherapy (gemcitabine) was effective in preventing the progression of preneoplastic intraepithelial lesions to invasive pancreatic ductal adenocarcinomas. The study was conducted in an appropriate triple transgenic model of spontaneous pancreatic cancer induced by the KRAS(G12D) mutation and that expresses human MUC1 as a self molecule. The combination treatment elicited robust antitumor cellular and humoral immune responses and was associated with increased apoptosis in the tumor. The mechanism for the increased immune response was attributed to the down-regulation of circulating prostaglandin E(2) and indoleamine 2, 3,-dioxygenase enzymatic activity, as well as decreased levels of T regulatory and myeloid suppressor cells within the tumor microenvironment. The preclinical data provide the rationale to design clinical trials with a combination of MUC1-based vaccine, celecoxib, and gemcitabine for the treatment of pancreatic cancer.


Assuntos
Adenocarcinoma/enzimologia , Adenocarcinoma/prevenção & controle , Vacinas Anticâncer/administração & dosagem , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/prevenção & controle , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/prevenção & controle , Adenocarcinoma/patologia , Animais , Anticorpos/sangue , Vacinas Anticâncer/imunologia , Carcinoma Ductal Pancreático/patologia , Celecoxib , Ciclo-Oxigenase 2/metabolismo , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Camundongos Transgênicos , Mucina-1/administração & dosagem , Mucina-1/imunologia , Neoplasias Pancreáticas/patologia , Pirazóis/administração & dosagem , Sulfonamidas/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...