Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746414

RESUMO

SARS-CoV-2 continues to be a public health burden, driven in-part by its continued antigenic diversification and resulting emergence of new variants. While increasing herd immunity, current vaccines, and therapeutics have improved outcomes for some; prophylactic and treatment interventions that are not compromised by viral evolution of the Spike protein are still needed. Using a rationally designed SARS-CoV-2 Receptor Binding Domain (RBD) - ACE2 fusion protein and differential selection process with native Omicron RBD protein, we developed a recombinant human monoclonal antibody (hmAb) from a convalescent individual following SARS-CoV-2 Omicron infection. The resulting hmAb, 1301B7 potently neutralized a wide range of SARS-CoV-2 variants including the original Wuhan and more recent Omicron JN.1 strain, as well as SARS-CoV. Structure determination of the SARS-CoV-2 EG5.1 Spike/1301B7 Fab complex by cryo-electron microscopy at 3.1Å resolution demonstrates 1301B7 contacts the ACE2 binding site of RBD exclusively through its VH1-69 heavy chain, making contacts using CDRs1-3, as well as framework region 3 (FR3). Broad specificity is achieved through 1301B7 binding to many conserved residues of Omicron variants including Y501 and H505. Consistent with its extensive binding epitope, 1301B7 is able to potently diminish viral burden in the upper and lower respiratory tract and protect mice from challenge with Omicron XBB1.5 and Omicron JN.1 viruses. These results suggest 1301B7 has broad potential to prevent or treat clinical SARS-CoV-2 infections and to guide development of RBD-based universal SARS-CoV-2 prophylactic vaccines and therapeutic approaches.

3.
Viruses ; 15(7)2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37515226

RESUMO

Influenza B virus (IBV) contributes to substantial influenza-mediated morbidity and mortality, particularly among children. Similar to influenza A viruses (IAV), the hemagglutinin (HA) and neuraminidase (NA) of IBV undergo antigenic drift, necessitating regular reformulation of seasonal influenza vaccines. NA inhibitors, such as oseltamivir, have reduced activity and clinical efficacy against IBV, while M2 channel inhibitors are only effective against IAV, highlighting the need for improved vaccine and therapeutics for the treatment of seasonal IBV infections. We have previously described a potent human monoclonal antibody (hMAb), 1092D4, that is specific for IBV NA and neutralizes a broad range of IBVs. The anti-viral activity of MAbs can include direct mechanisms such as through neutralization and/or Fc-mediated effector functions that are dependent on accessory cells expressing Fc receptors and that could be impacted by potential host-dependent variability. To discern if the in vivo efficacy of 1092D4 was dependent on Fc-effector function, 1092D4 hMAb with reduced ability to bind to Fc receptors (1092D4-LALAPG) was generated and tested. 1092D4-LALAPG had comparable in vitro binding, neutralization, and inhibition of NA activity to 1092D4. 1092D4-LALAPG was effective at protecting against a lethal challenge of IBV in mice. These results suggest that hMAb 1092D4 in vivo activity is minimally dependent on Fc-effector functions, a characteristic that may extend to other hMAbs that have potent NA inhibition activity.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Criança , Animais , Camundongos , Humanos , Anticorpos Amplamente Neutralizantes , Neuraminidase , Anticorpos Antivirais , Vírus da Influenza B , Anticorpos Monoclonais/farmacologia , Receptores Fc , Glicoproteínas de Hemaglutininação de Vírus da Influenza
4.
Microbiol Spectr ; 11(4): e0472822, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37318331

RESUMO

Due to antigenic drift and shift of influenza A viruses (IAV) and the tendency to elicit predominantly strain-specific antibodies, humanity remains susceptible to new strains of seasonal IAV and is at risk from viruses with pandemic potential for which limited or no immunity may exist. The genetic drift of H3N2 IAV is specifically pronounced, resulting in two distinct clades since 2014. Here, we demonstrate that immunization with a seasonal inactivated influenza vaccine (IIV) results in increased levels of H3N2 IAV-specific serum antibodies against hemagglutinin (HA) and neuraminidase (NA). Detailed analysis of the H3N2 B cell response indicated expansion of H3N2-specific peripheral blood plasmablasts 7 days after IIV immunization which expressed monoclonal antibodies (MAbs) with broad and potent antiviral activity against many H3N2 IAV strains as well as prophylactic and therapeutic activity in mice. These H3N2-specific B cell clonal lineages persisted in CD138+ long-lived bone marrow plasma cells. These results demonstrate that IIV-induced H3N2 human MAbs can protect and treat influenza virus infection in vivo and suggest that IIV can induce a subset of IAV H3N2-specific B cells with broad protective potential, a feature that warrants further study for universal influenza vaccine development. IMPORTANCE Influenza A virus (IAV) infections continue to cause substantial morbidity and mortality despite the availability of seasonal vaccines. The extensive genetic variability in seasonal and potentially pandemic influenza strains necessitates new vaccine strategies that can induce universal protection by focusing the immune response on generating protective antibodies against conserved targets within the influenza virus hemagglutinin and neuraminidase proteins. We have demonstrated that seasonal immunization with inactivated influenza vaccine (IIV) stimulates H3N2-specific monoclonal antibodies in humans that are broad and potent in their neutralization of virus in vitro. These antibodies also provide protection from H3N2 IAV in a mouse model of infection. Furthermore, they persist in the bone marrow, where they are expressed by long-lived antibody-producing plasma cells. This significantly demonstrates that seasonal IIV can induce a subset of H3N2-specific B cells with broad protective potential, a process that if further studied and enhanced could aid in the development of a universal influenza vaccine.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Camundongos , Influenza Humana/prevenção & controle , Vacinas contra Influenza/genética , Hemaglutininas , Vírus da Influenza A Subtipo H3N2/genética , Neuraminidase , Anticorpos Monoclonais , Vírus da Influenza A Subtipo H1N1/genética , Anticorpos Antivirais , Vírus da Influenza A/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
5.
AIDS Res Hum Retroviruses ; 39(7): 350-366, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36762930

RESUMO

The most potent and broad HIV envelope (Env)-specific antibodies often when reverted to their inferred germline versions representing the naive B cell receptor, fail to bind Env, suggesting that the initial responding B cell population not only exclusively comprises a naive population, but also a pre-existing cross-reactive antigen-experienced B cell pool that expands following Env exposure. Previously we isolated gp120-reactive monoclonal antibodies (mAbs) from participants in HVTN 105, an HIV vaccine trial. Using deep sequencing, focused on immunoglobulin G (IgG), IgA, and IgM, VH-lineage tracking, we identified four of these mAb lineages in pre-immune peripheral blood. We also looked through the ∼7 month postvaccination bone marrow, and interestingly, several of these lineages that were found in prevaccination blood were still persistent in the postvaccination bone marrow, including the CD138+ long-lived plasma cell compartment. The majority of the pre-immune lineage members included IgM, however, IgG and IgA members were also prevalent and exhibited somatic hypermutation. These results suggest that vaccine-induced gp120-specific antibody lineages originate from both naive and cross-reactive memory B cells. ClinicalTrials.gov NCT02207920.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/prevenção & controle , Anticorpos Anti-HIV , Vacinação , Proteína gp120 do Envelope de HIV , Imunoglobulina G , Anticorpos Monoclonais , Imunoglobulina A , Imunoglobulina M , Anticorpos Neutralizantes
6.
PLoS Pathog ; 18(7): e1010691, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35862475

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) marks the third novel ß-coronavirus to cause significant human mortality in the last two decades. Although vaccines are available, too few have been administered worldwide to keep the virus in check and to prevent mutations leading to immune escape. To determine if antibodies could be identified with universal coronavirus activity, plasma from convalescent subjects was screened for IgG against a stabilized pre-fusion SARS-CoV-2 spike S2 domain, which is highly conserved between human ß-coronavirus. From these subjects, several S2-specific human monoclonal antibodies (hmAbs) were developed that neutralized SARS-CoV-2 with recognition of all variants of concern (VoC) tested (Beta, Gamma, Delta, Epsilon, and Omicron). The hmAb 1249A8 emerged as the most potent and broad hmAb, able to recognize all human ß-coronavirus and neutralize SARS-CoV and MERS-CoV. 1249A8 demonstrated significant prophylactic activity in K18 hACE2 mice infected with SARS-CoV-2 lineage A and lineage B Beta, and Omicron VoC. 1249A8 delivered as a single 4 mg/kg intranasal (i.n.) dose to hamsters 12 hours following infection with SARS-CoV-2 Delta protected them from weight loss, with therapeutic activity further enhanced when combined with 1213H7, an S1-specific neutralizing hmAb. As little as 2 mg/kg of 1249A8 i.n. dose 12 hours following infection with SARS-CoV Urbani strain, protected hamsters from weight loss and significantly reduced upper and lower respiratory viral burden. These results indicate in vivo cooperativity between S1 and S2 specific neutralizing hmAbs and that potent universal coronavirus neutralizing mAbs with therapeutic potential can be induced in humans and can guide universal coronavirus vaccine development.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais , COVID-19/terapia , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2 , Redução de Peso
7.
bioRxiv ; 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35291292

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) marks the third novel ß-coronavirus to cause significant human mortality in the last two decades. Although vaccines are available, too few have been administered worldwide to keep the virus in check and to prevent mutations leading to immune escape. To determine if antibodies could be identified with universal coronavirus activity, plasma from convalescent subjects was screened for IgG against a stabilized pre-fusion SARS-CoV-2 spike S2 domain, which is highly conserved between human ß-coronavirus. From these subjects, several S2-specific human monoclonal antibodies (hmAbs) were developed that neutralized SARS-CoV-2 with recognition of all variants of concern (VoC) tested (Beta, Gamma, Delta, Epsilon, and Omicron). The hmAb 1249A8 emerged as the most potent and broad hmAb, able to recognize all human ß-coronavirus and neutralize SARS-CoV and MERS-CoV. 1249A8 demonstrated significant prophylactic activity in K18 hACE2 mice infected with SARS-CoV-2 lineage A and lineage B Beta, and Omicron VoC. 1249A8 delivered as a single 4 mg/kg intranasal (i.n.) dose to hamsters 12 hours following infection with SARS-CoV-2 Delta protected them from weight loss, with therapeutic activity further enhanced when combined with 1213H7, an S1-specific neutralizing hmAb. As little as 2 mg/kg of 1249A8 i.n. dose 12 hours following infection with SARS-CoV Urbani strain, protected hamsters from weight loss and significantly reduced upper and lower respiratory viral burden. These results indicate in vivo cooperativity between S1 and S2 specific neutralizing hmAbs and that potent universal coronavirus neutralizing mAbs with therapeutic potential can be induced in humans and can guide universal coronavirus vaccine development.

8.
Front Immunol ; 12: 757811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745131

RESUMO

Induction of broadly neutralizing antibodies (bNAbs) is a major goal for HIV vaccine development. HIV envelope glycoprotein (Env)-specific bNAbs isolated from HIV-infected individuals exhibit substantial somatic hypermutation and correlate with T follicular helper (Tfh) responses. Using the VC10014 DNA-protein co-immunization vaccine platform consisting of gp160 plasmids and gp140 trimeric proteins derived from an HIV-1 infected subject that developed bNAbs, we determined the characteristics of the Env-specific humoral response in vaccinated rhesus macaques in the context of CD4+ T cell depletion. Unexpectedly, both CD4+ depleted and non-depleted animals developed comparable Tier 1 and 2 heterologous HIV-1 neutralizing plasma antibody titers. There was no deficit in protection from SHIV challenge, no diminution of titers of HIV Env-specific cross-clade binding antibodies, antibody dependent cellular phagocytosis, or antibody-dependent complement deposition in the CD4+ depleted animals. These collective results suggest that in the presence of diminished CD4+ T cell help, HIV neutralizing antibodies were still generated, which may have implications for developing effective HIV vaccine strategies.


Assuntos
Vacinas contra a AIDS , Anticorpos Amplamente Neutralizantes/biossíntese , Anticorpos Anti-HIV/biossíntese , Macaca mulatta/imunologia , Animais , Anticorpos Antibacterianos/biossíntese , Anticorpos Antibacterianos/imunologia , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Amplamente Neutralizantes/imunologia , Linfócitos T CD4-Positivos/imunologia , Reações Cruzadas , Feminino , Centro Germinativo/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp160 do Envelope de HIV/imunologia , HIV-1/imunologia , Imunização Secundária , Masculino , Fagocitose , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Desenvolvimento de Vacinas , Vacinas Sintéticas , Carga Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
9.
Cell Rep Med ; 2(3): 100218, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33649747

RESUMO

SARS-CoV-2 infection results in viral burden in the respiratory tract, enabling transmission and leading to substantial lung pathology. The 1212C2 fully human monoclonal antibody was derived from an IgM memory B cell of a COVID-19 patient, has high affinity for the Spike protein receptor binding domain, neutralizes SARS-CoV-2, and exhibits in vivo prophylactic and therapeutic activity in hamsters when delivered intraperitoneally, reducing upper and lower respiratory viral burden and lung pathology. Inhalation of nebulized 1212C2 at levels as low as 0.6 mg/kg, corresponding to 0.03 mg/kg lung-deposited dose, reduced the viral burden below the detection limit and mitigated lung pathology. The therapeutic efficacy of an exceedingly low dose of inhaled 1212C2 supports the rationale for local lung delivery for dose-sparing benefits, as compared to the conventional parenteral route of administration. These results suggest that the clinical development of 1212C2 formulated and delivered via inhalation for the treatment of SARS-CoV-2 infection should be considered.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Administração por Inalação , Animais , Anticorpos Monoclonais/classificação , Anticorpos Monoclonais/imunologia , COVID-19/virologia , Cricetinae , Modelos Animais de Doenças , Mapeamento de Epitopos , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina M/imunologia , Masculino , Células B de Memória/citologia , Células B de Memória/metabolismo , Pessoa de Meia-Idade , Testes de Neutralização , Filogenia , Domínios Proteicos/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
Cell Rep Med ; 1(2)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32577626

RESUMO

Induction of persistent HIV-1 Envelope (Env) specific antibody (Ab) is a primary goal of HIV vaccine strategies; however, it is unclear whether HIV Env immunization in humans induces bone marrow plasma cells, the presumed source of long-lived systemic Ab. To define the features of Env-specific plasma cells after vaccination, samples were obtained from HVTN 105, a phase I trial testing the same gp120 protein immunogen, AIDSVAX B/E, used in RV144, along with a DNA immunogen in various prime and boost strategies. Boosting regimens that included AIDSVAX B/E induced robust peripheral blood plasmablast responses. The Env-specific immunoglobulin repertoire of the plasmablasts is dominated by VH1 gene usage and targeting of the V3 region. Numerous plasmablast-derived immunoglobulin lineages persisted in the bone marrow >8 months after immunization, including in the CD138+ long-lived plasma cell compartment. These findings identify a cellular linkage for the development of sustained Env-specific Abs following vaccination in humans.


Assuntos
Vacinas contra a AIDS/uso terapêutico , Infecções por HIV/prevenção & controle , Plasmócitos/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Especificidade de Anticorpos , Linhagem da Célula/imunologia , Sobrevivência Celular/imunologia , Células Cultivadas , Células HEK293 , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Plasmócitos/metabolismo , Plasmócitos/patologia , Plasmócitos/virologia , Células THP-1 , Vacinação
11.
mBio ; 10(2)2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862743

RESUMO

Although most seasonal inactivated influenza vaccines (IIV) contain neuraminidase (NA), the extent and mechanisms of action of protective human NA-specific humoral responses induced by vaccination are poorly resolved. Due to the propensity of influenza virus for antigenic drift and shift and its tendency to elicit predominantly strain-specific antibodies, humanity remains susceptible to waves of new strains of seasonal viruses and is at risk from viruses with pandemic potential for which limited or no immunity may exist. Here we demonstrate that the use of IIV results in increased levels of influenza B virus (IBV) NA-specific serum antibodies. Detailed analysis of the IBV NA B cell response indicates concurrent expansion of IBV NA-specific peripheral blood plasmablasts 7 days after IIV immunization which express monoclonal antibodies with broad and potent antiviral activity against both IBV Victoria and Yamagata lineages and prophylactic and therapeutic activity in mice. These IBV NA-specific B cell clonal lineages persisted in CD138+ long-lived bone marrow plasma cells. These results represent the first demonstration that IIV-induced NA human antibodies can protect and treat influenza virus infection in vivo and suggest that IIV can induce a subset of IBV NA-specific B cells with broad protective potential, a feature that warrants further study for universal influenza vaccine development.IMPORTANCE Influenza virus infections continue to cause substantial morbidity and mortality despite the availability of seasonal vaccines. The extensive genetic variability in seasonal and potentially pandemic influenza strains necessitates new vaccine strategies that can induce universal protection by focusing the immune response on generating protective antibodies against conserved targets such as regions within the influenza neuraminidase protein. We have demonstrated that seasonal immunization stimulates neuraminidase-specific antibodies in humans that are broad and potent in their protection from influenza B virus when tested in mice. These antibodies further persist in the bone marrow, where they are expressed by long-lived antibody-producing cells, referred to here as plasma cells. The significance in our research is the demonstration that seasonal influenza immunization can induce a subset of neuraminidase-specific B cells with broad protective potential, a process that if further studied and enhanced could aid in the development of a universal influenza vaccine.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Neuraminidase/imunologia , Plasmócitos/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/sangue , Proteção Cruzada , Modelos Animais de Doenças , Voluntários Saudáveis , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/terapia , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/terapia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
12.
Vaccine ; 37(17): 2322-2330, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30926296

RESUMO

Induction of a sustained and broad antibody (Ab) response is a major goal in developing a protective HIV-1 vaccine. DNA priming alone shows reduced levels of immunogenicity; however, when combined with protein boosting is an attractive vaccination strategy for induction of humoral responses. Using the VC10014 DNA and protein-based vaccine consisting of HIV-1 envelope (Env) gp160 plasmids and trimeric gp140 proteins derived from an HIV-1 clade B infected subject who developed broadly neutralizing serum Abs, and which has been previously demonstrated to induce Tier 2 heterologous neutralizing Abs in rhesus macaques, we evaluated whether MPLA and IL-33 when administered during the DNA priming phase enhances the humoral response in mice. The addition of IL-33 during the gp160 DNA priming phase resulted in high titer gp120-specific plasma IgG after the first immunization. The IL-33 treated mice had higher plasma IgG Ab avidity, breadth, and durability after DNA and protein co-immunization with alum adjuvant as compared to MPLA and alum only treated mice. IL-33 was also associated with a significant IgM Env-specific response and expansion of peritoneal and splenic B-1b B cells. These results indicate that DNA priming in the presence of exogenous IL-33 qualitatively alters the HIV-1 Env-specific humoral response, improving the kinetics and breadth of potentially protective Ab.


Assuntos
Vacinas contra a AIDS/imunologia , Formação de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/imunologia , Interleucina-33/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/genética , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Modelos Animais de Doenças , Feminino , Anticorpos Anti-HIV/sangue , Infecções por HIV/virologia , Humanos , Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Camundongos , Vacinas de DNA/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
13.
Mol Immunol ; 105: 62-75, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496978

RESUMO

The molecular crosstalk of proximal innate immune receptor signaling mediated by Toll-like receptors (TLRs) is crucial in generating an adaptive immune response. The extracellular-signal regulated kinases (ERK) participate in propagating intracellular signals initiated by stimulated TLRs to transcription factors eliciting cytokine release. Although ERK signaling has been extensively studied in mammalian counterparts, very little is known about its existence in carps and its role in augmentation of immunoglobulin (Ig) synthesis. Therefore, to gain insights into the efficacy of MAP kinase cascade in orchestrating fish antigen receptor generation, Catla catla fingerlings were induced with various TLR agonists or pathogen associated molecular patterns (PAMPs). Analysis of upstream signaling events revealed that PAMPs stimulated the tissues leading to a significant upregulation (P < 0.001, One-way ANOVA) of different TLRs (TLR2, TLR3, TLR4 and TLR5) followed by activation of MyD88 dependent and independent pathway. Activation of ERK and NF-κB mediated cytokine production consequently triggered the enhanced expression of IgZ and IgM as was evident by qRT-PCR analysis, flow cytometry, immunoblotting and ELISA. Pretreatment with ERK inhibitor (UO126) antagonized PAMPs mediated TLR stimulation, leading to sequential downregulation of MyD88/NF-κB/cytokines via interrupting ERK/NF-κB signaling axis. Together these results demonstrate that TLR stimulation triggers IgZ and IgM production via activation of ERK and NF-κB in C. catla indicating that NF-κB mediated cytokine production and ERK1/2 signaling is not only functional in fish, but may be crucial for generation of Ig repertoire in lower vertebrates.


Assuntos
Cyprinidae/imunologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Proteínas de Peixes/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , NF-kappa B/imunologia , Receptores Toll-Like/imunologia , Animais
14.
DNA Cell Biol ; 37(8): 708-723, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29905492

RESUMO

The high-mobility group box 1 (HMGB1) protein is a highly conserved nonhistone chromosomal protein ubiquitously present in almost all cell types. In the nucleus, it facilitates DNA repair and replication, V(D)J recombination, stabilization of nucleosome, and in the cytoplasm, it regulates autophagy and apoptosis. In addition to these intracellular functions, HMGB1 also facilitates activation of innate immune responses and plays key roles in host defense. To investigate its role in fish, we cloned and characterized HMGB1 in Labeo rohita (LrHMGB1), the most important freshwater fish species in the Indian subcontinent. The full-length cDNA sequence of LrHMGB1 consisted of 787 bp having an open reading frame of 618 bp encoding 205 amino acids (aa) polypeptide, with an estimated molecular mass of 23.61 kDa and isoelectric point (pI) of 5.96. Motif search of LrHMGB1 revealed two homologous DNA-binding domains, the A-box and B-box comprising 8-78 aa and 94-162 aa, respectively, and a negatively charged acidic C-terminal tail (179-204) that consisted of 26 consecutive aspartic and glutamic acid residues. The amino acids sequence of LrHMGB1 protein and the secondary structure having helix (H) and coils (C) in tandem in the A- and B-box region and only coils in the acidic tail region shared significant similarity with mouse and human HMGB1. In addition to the three prominent motifs (A-box, B-box, and the acidic tail), the site of acetylation (lys27-29), phosphorylation (serine38,41,45,52), methylation (lys43), and oxidation (cysteine44,105) in LrHMGB1 was also conserved across the fish species, mouse, and human. LrHMGB1 was expressed during embryogenesis and was widely expressed in various organs/tissues having highest expression in blood. In response to bacterial infection, antiviral vaccination, and pathogen-associated molecular patterns stimulations, LrHMGB1 gene expression was significantly (p < 0.05) induced in various organs and tissues. These results together suggest an evolutionary conserved structure and function of HMGB1 from fish to human.


Assuntos
Antivirais/farmacologia , Infecções Bacterianas/genética , Carpas/genética , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Proteína HMGB1/genética , Moléculas com Motivos Associados a Patógenos/farmacologia , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Infecções Bacterianas/veterinária , Sequência de Bases , Carpas/microbiologia , Clonagem Molecular , Sequência Conservada , DNA Complementar/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína HMGB1/análise , Imunidade Inata/genética , Vacinação/veterinária
15.
Sci Rep ; 8(1): 4374, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531320

RESUMO

Influenza's propensity for antigenic drift and shift, and to elicit predominantly strain specific antibodies (Abs) leaves humanity susceptible to waves of new strains with pandemic potential for which limited or no immunity may exist. Subsequently new clinical interventions are needed. To identify hemagglutinin (HA) epitopes that if targeted may confer universally protective humoral immunity, we examined plasmablasts from a subject that was immunized with the seasonal influenza inactivated vaccine, and isolated a human monoclonal Ab (mAb), KPF1. KPF1 has broad and potent neutralizing activity against H1 influenza viruses, and recognized 83% of all H1 isolates tested, including the pandemic 1918 H1. Prophylactically, KPF1 treatment resulted in 100% survival of mice from lethal challenge with multiple H1 influenza strains and when given as late as 72 h after challenge with A/California/04/2009 H1N1, resulted in 80% survival. KPF1 recognizes a novel epitope in the HA globular head, which includes a highly conserved amino acid, between the Ca and Cb antigenic sites. Although recent HA stalk-specific mAbs have broader reactivity, their potency is substantially limited, suggesting that cocktails of broadly reactive and highly potent HA globular head-specific mAbs, like KPF1, may have greater clinical feasibility for the treatment of influenza infections.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/terapia , Animais , Humanos , Imunidade Humoral , Vacinas contra Influenza/imunologia , Camundongos , Infecções por Orthomyxoviridae/mortalidade , Especificidade da Espécie , Taxa de Sobrevida
16.
Microbiol Immunol ; 61(10): 452-458, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28877365

RESUMO

The primordial immunoglobulin class, IgD, was the first non-IgM isotype discovered in teleosts. The crucial roles of IgM and IgZ in imparting systemic and mucosal immunity, respectively, in various fish species have been widely established. However, the putative function of a unique IgD isotype during pathogenic invasions has not been well explored. The present study reports the existence of an IgD ortholog in freshwater carp, Catla catla, and further evaluates its differential expression profile in response to bacterial, parasitic and viral antigenic exposure and pathogen associated molecular patterns (PAMPs) stimulation. The IgD of C. catla (CcIgD) cDNA sequence was found to encode 226 amino acids and confirmed homology with heavy chain delta region of Cyprinidae family members. Phylogenetic analysis of CcIgD exhibited greatest similarity with Ctenopharyngodon idella. qRT-PCR analysis revealed significant upregulation (P < 0.001) of IgD gene expression in kidney with respect to other tissues at 24 hr post-Aeromonas hydrophila challenge. CcIgD gene expression in skin was enhanced following Streptococcus uberis infection and in blood following Argulus infection and inactivated rhabdoviral antigen stimulation. Further, the treatment of bacterial and viral products (PAMPs) also triggered significant (P < 0.05) increases in CcIgD mRNA expression in kidney. These findings indicate the functional importance of teleost IgD in orchestrating tissue specific neutralization of antigens on stimulation with different pathogens and PAMPs.


Assuntos
Carpas/genética , Carpas/imunologia , Clonagem Molecular , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica , Imunoglobulina D/química , Imunoglobulina D/genética , Moléculas com Motivos Associados a Patógenos , Aeromonas hydrophila/imunologia , Aeromonas hydrophila/patogenicidade , Sequência de Aminoácidos , Animais , Arguloida/patogenicidade , Infecções Bacterianas/imunologia , Cyprinidae/imunologia , DNA Complementar/genética , Doenças dos Peixes/microbiologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/virologia , Água Doce , Expressão Gênica , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunoglobulina D/classificação , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Isotipos de Imunoglobulinas/química , Isotipos de Imunoglobulinas/genética , Rim , Doenças Parasitárias/imunologia , Filogenia , Rhabdoviridae/patogenicidade , Análise de Sequência de Proteína , Pele/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus/patogenicidade , Viroses/imunologia
17.
Fish Shellfish Immunol ; 60: 164-176, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27838566

RESUMO

Toll-like receptors (TLRs) play key roles in innate immunity from lower to higher vertebrates. Among various TLR types, TLR4 was reported to recognize LPS in higher vertebrates resulting in the activation of down-stream signaling pathway. Except in some teleosts, function of TLR4 in most fish species including rohu (Labeo rohita) a commercially important fish species in the South-East Asian countries remained unknown. To investigate it, full-length cDNA of Labeo rohita TLR4 (LrTLR4) was cloned, and it consisted of 2729 bp, with a single ORF of 2469 bp encoding a polypeptide of 822 aa with a predicted molecular mass of 94.753 kDa. Structurally, LrTLR4 consisted of 25 LRRs (leucine rich repeat regions), one TM (trans-membrane) domain and one TIR (Toll/interleukin-1 receptor) domain, and was similar to higher vertebrate's TLR4. Phylogenetically, LrTLR4 exhibited highest (85%) identity with the common carp TLR4b amino acids sequence, and formed a separate subgroup in the phylogenetic tree. LrTLR4 was widely expressed in all tested organs/tissues, and amidst the tissues highest expression was detected in blood and the lowest in eye. In response to LPS-stimulation, LrTLR4 was induced with the activation of MyD88-dependent and TRIF-dependent signaling pathway resulting in pro-inflammatory cytokines (interleukin 6 and 8) and type I IFN gene expression. Infection of rohu with a Gram-negative fish pathogen (Aeromonas hydrophila), also activated LrTLR4. Together, these findings suggest the important role of TLR4 in LPS sensing and augmentation of innate immunity against Gram-negative bacterial infection in fish.


Assuntos
Cyprinidae , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/veterinária , Receptor 4 Toll-Like/genética , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Lipopolissacarídeos/farmacologia , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/classificação , Receptor 4 Toll-Like/metabolismo
18.
Vet Immunol Immunopathol ; 179: 77-84, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27590429

RESUMO

Immunoglobulins (Igs) play critical roles in protecting host against diverse pathogenic invasion and diseases. Among all Ig isotypes, IgD is the most recently-evolved and enigmatic molecule detected in all vertebrates species except birds. In South-East Asia, Labeo rohita (rohu) is the leading candidate fish species for freshwater aquaculture, and this article describes about IgD gene expression in rohu following viral, bacterial and parasitic antigenic challenges. The partial cDNA (761bp) of Labeo rohita-IgD (LrIgD) was cloned and submitted in the GenBank with the accession no KT883581. Phylogenetically, LrIgD was closely related to grass carp IgD. Analysis of LrIgD gene expression in juveniles by quantitative real-time PCR (qRT-PCR) assay revealed gradual increase in IgD expression with the advancement of time. In the healthy rohu fingerlings, LrIgD expression occurred predominantly in kidney followed by liver and spleen. In response to rhabdoviral antigenic stimulation, LrIgD expression was significantly enhanced in all tested tissues. In bacterial (Aeromonas hydrophila) infection, transcripts of LrIgD increased more dramatically in liver followed by kidney and gill. In parasitic (Argulus) infection, most significant expression of IgD was noted in the skin, followed by kidney, liver, spleen and gill. These results collectively suggest the key role of IgD in the immune response of rohu during viral, bacterial and parasitic infections.


Assuntos
Infecções Bacterianas/veterinária , Cyprinidae/imunologia , Doenças dos Peixes/imunologia , Imunoglobulina D/análise , Doenças Parasitárias em Animais/imunologia , Viroses/veterinária , Animais , Infecções Bacterianas/imunologia , Imunoglobulina D/genética , Especificidade de Órgãos , Filogenia , Viroses/imunologia
19.
Mol Immunol ; 78: 9-26, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27568001

RESUMO

B-cell activating factor (BAFF), an important member of the tumor necrosis factor superfamily, plays critical roles in the modulation of B-cell functions and enhancement of immune response in the host. Like higher vertebrates, the important role of BAFF in boosting immune response against diverse pathogens was also envisaged in fishes. We therefore, studied BAFF in rohu (Labeo rohita), a freshwater food fish species of highest economic importance in the Indian subcontinent. Full-length rohu-BAFF- cDNA comprised of 804bp nucleotide long ORF, encoding 267 amino acid residues, and shared high structural similarity with human-BAFF. It was expressed in the embryonic developmental stages suggesting its key role in immune response at the early life of fish. In Aeromonas hydrophila infection and rhabdoviral antigen stimulation, BAFF-gene expression in rohu was induced across the organs/tissues. Stimulation of un-treated healthy rohu fish leukocytes, and viral or bacterial or BSA (bovine serum albumin) antigen stimulated rohu fish leukocytes with recombinant-BAFF (r-BAFF) resulted in enhanced expression of immunoglobulin (Ig)M. Both in-vitro and in-vivo treatment with toll-like receptor (TLR)- ligand (poly I:C) or nod-like receptor (NLR)- ligands (iE-DAP and MDP) resulted in TLR and NLR activation and BAFF-gene expression. This is the first report showing BAFF-expression by innate immune receptor-ligands and its critical role in enhancing adaptive immune response in fish.


Assuntos
Fator Ativador de Células B/imunologia , Carpas/imunologia , Proteínas de Peixes/imunologia , Imunoglobulina M/biossíntese , Proteínas NLR/imunologia , Receptores Toll-Like/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Imunoglobulina M/imunologia , Ligantes , Reação em Cadeia da Polimerase , Transcriptoma
20.
Microbiol Immunol ; 60(8): 561-7, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27301776

RESUMO

Immunoglobulins serve as a crucial arm of the adaptive immune system against detrimental pathogenic threats in teleosts. However, whether the novel Ig isotype IgZ is present in the Indian major carp, Catla catla, has not yet been elucidated. The present study reports the presence of IgZ ortholog in C. catla (CcIgZ) and further demonstrates its comparative tissue specific expression with IgM (CcIgM) in response to bacterial and parasitic stimulation. The putative 139 amino acid sequence of IgZ heavy chain cDNA of C. catla showed homology with IgZ constant domains of other teleosts. Phylogenetic analysis of the predicted IgZ transcript sequence clustered with previously identified IgZ heavy chain sequences of Cyprinidae family members. The inductive expression profiles of IgZ and IgM genes were evaluated in immunologically relevant tissues at 24, 48 and 72 hr post infection with Aeromonas hydrophila, Streptococcus uberis and Argulus sp. Both CcIgZ and CcIgM were expressed most strongly in the kidneys of healthy fish. Basal expression of CcIgM transcript was higher than that of CcIgZ in all the examined tissues. Stimulation with bacteria triggered significant increase of IgZ in the intestine (P < 0.001) and spleen (P < 0.01), whereas IgM was relatively up-regulated in blood (P < 0.001) after stimulation with each of the three pathogens assessed. The study is the first to report identification of IgZ in C. catla. Further, it provides insights into the differential expression profiles of IgZ and IgM isotypes against various pathogenic infection in C. catla, which may facilitate better prophylaxis again such infections.


Assuntos
Clonagem Molecular , Doenças dos Peixes/genética , Peixes/genética , Expressão Gênica , Cadeias Pesadas de Imunoglobulinas/genética , Isotipos de Imunoglobulinas/genética , Imunoglobulina M/genética , Sequência de Aminoácidos , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/parasitologia , Peixes/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Cadeias Pesadas de Imunoglobulinas/química , Isotipos de Imunoglobulinas/química , Imunoglobulina M/química , Filogenia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...