Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(42): 12981-12990, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36218026

RESUMO

Hydrogen generation from splitting of water under the photoelectrochemical (PEC) pathway is considered as the most promising strategy for covering the upcoming fuel crisis by taking care of all environmental issues. In this context, In2S3 can be explored as it is a visible light-active semiconductor with an appropriate band alignment with the water redox potential. Herein, In2S3 nanosheets are developed by the chemical method. The nanosheets of In2S3 absorb high visible light due to the manifold inside scattering and reflection. The PEC activity of In2S3 is enhanced because of the increase in the light absorbance of the materials. In the present work, at 1.18 V versus RHE in 3.5 wt % NaCl, a maximum 2.07 mA/cm2 photocurrent density can be achieved by In2S3 nanosheets. However, In2S3 suffers strongly due to photo-corrosion. To improve the efficacy of the In2S3 nanosheets in saline water, the charge-carrier transportation ability of In2S3 is aimed to increase by decorating S-C3N4-dots on In2S3. The heterostructure of type-II is developed by sensitization of S-C3N4-dots on In2S3. It increases both the transportation of charge carriers as well as separation. In the heterostructure, the transient decay time (τ) increases, which indicates a decrease in photogenerated charge-carrier recombination. S-C3N4-dots also act as an optical antenna and increase the range of visible light absorbance of In2S3. The heterostructure can generate ∼2.38-fold higher photocurrent density of 1.18 V versus RHE in 3.5 wt % NaCl. The photoconversion efficiency of the heterostructure is 0.88% at 0.95 V versus RHE. The nanosheets of In2S3 and In2S3/S-C3N4-dots are stable, and photocurrent density is measured up to 2700 s under continuous back-illumination conditions.

2.
Langmuir ; 37(16): 4847-4858, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33844924

RESUMO

To replace Pt-based compounds in the electrocatalytic hydrogen evolution reaction (HER), MoS2 has already been established as an efficient catalyst. The electrocatalytic activity of MoS2 is further improved by tuning the morphology and the electronic structure through doping, which helps the band energy position to be modified. Presently, thin sheets of MoS2 (MoS2-TSs) are synthesized via a microwave technique. Thin sheets of MoS2 can outperform nanosheets of MoS2 in the HER. Further, the efficiency of the thin sheets is improved by doping with different metals like Cu, V, Zn, Mn, Fe, Sn, etc. "Cu"- and "V"-doped MoS2-TSs are highly efficient for the HER. At a fixed potential of -0.588 V vs RHE, Cu-doped MoS2 (Cu-MoS2-TS), V-doped MoS2 (V-MoS2-TS), and MoS2-TS can generate current densities of 327.46, 308.45, and 127.82 mA/cm2, respectively. The electrochemically active surface area increases nearly 7.7-fold and 2.5-fold for Cu-MoS2-TS and V-MoS2-TS than for MoS2-TS, respectively. Cu-MoS2-TS shows exceptionally high electrocatalytic stability up to 140 h in an acidic medium (0.5 M H2SO4). First-principles calculations using density functional theory (DFT) are performed, which are well matched with the experimental observations. DFT calculations dictate that after doping with "V" and "Cu" both valance band maxima and conduction band minima are uplifted, which indicates the higher hydrogen-ion-reducing ability of M-MoS2-TS (M = Cu, V) compared to bare MoS2-TS.

3.
Langmuir ; 36(46): 14019-14030, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33166147

RESUMO

The development of an efficient electrocatalyst for hydrogen evolution reaction (HER) is essential to facilitate the practical application of water splitting. Here, we aim to develop an electrocatalyst, Ni/Ni(OH)2/NiOOH, via electrodeposition technique on carbon cloth, which shows efficient activity and durability for HER in an alkaline medium. Phase purity and morphology of the electrodeposited catalyst are determined using powder X-ray diffraction and electron microscopic techniques. The compositional and thermal stability of the catalyst is checked using X-ray photoelectron spectroscopy and thermogravimetry analysis. Electrodeposited Ni/Ni(OH)2/NiOOH material is an efficient, stable, and low-cost electrocatalyst for hydrogen evolution reaction in a 1.0 M KOH medium. The catalyst exhibits remarkable performance, achieving a current density of 10 mA/cm2 at a potential of -0.045 V vs reversible hydrogen electrode (RHE), and the Tafel slope value is 99.6 mV/dec. The overall electrocatalytic water splitting mechanism using Ni/Ni(OH)2/NiOOH catalyst is well explained, where formation and desorption of OH- ion on the catalyst surface are significant at alkaline pH. The developed electrocatalyst shows significant durability up to 200 h in a negative potential window in a highly corrosive alkaline environment along with efficient activity. The electrocatalyst can generate 165.6 µmol of H2 in ∼145 min of reaction time with 81.5% faradic efficiency.

4.
Inorg Chem ; 59(10): 6988-6999, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32369368

RESUMO

Hydrogen evolution through ecofriendly photoelectrochemical (PEC) water splitting is considered to be one of the most cost-effective and desirable methods for meeting ever-growing energy demands. However, the low photoconversion efficiency limits the practical applicability of PEC water splitting. To develop an efficient photoelectrode, here the morphology of ZnO is tuned from 0D to 3D. It is observed that vertically grown 2D nanosheets outperform other morphologies in PEC water splitting by generating nearly 0.414 mA cm-2 at 0 V vs Ag/AgCl. Furthermore, these perpendicularly developed 2D nanosheets of ZnO are sensitized by metal-free carbon (C) dots to improve the photoconversion efficiency of ZnO. The prepared ZnO/C dots work as an effective photoanode, which can produce a 0.831 mA cm-2 photocurrent density upon application of 0 V vs Ag/AgCl under constant illumination, which is 2 times higher than that of bare ZnO. The enhanced PEC performance of ZnO/C dots is confirmed by the photoconversion efficiency (η). The ZnO/C dots exhibit a 2-fold-higher photoconversion efficiency (η) compared to that of ZnO. Additionally, the enhancement in PEC activity of ZnO/C dots is attributed to the higher carrier concentrations in the heterostructure. Bare ZnO has a 1.77 × 1020 cm-3 carrier density, which becomes 3.70 × 1020 cm-3 after sensitization with C dots. Enhanced carrier density successively leads to higher PEC water splitting efficiency. Band alignments of ZnO and C dots indicate the creation of the type-II heterostructure, which facilitates successful charge transportation among C dots and ZnO, producing a charge-carrier separation. Two-dimensional sheets of ZnO and ZnO/C dots exhibit appreciable stability under continuous illumination for 1 and 2 h, respectively.

5.
Inorg Chem ; 59(7): 4377-4388, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32149505

RESUMO

Two-dimensional layered transition metal dichalcogenides, MoSe2 and MoS2, have drawn potential attention in the field of water splitting. Coupling of MoS2 and MoSe2 provides a sustainable route to improve the electrocatalytic activity for the hydrogen evolution reaction (HER). Here, the heterostructures of thin sheets (ts) of MoSe2 and MoS2 are combined to develop the MoSe2-ts@MoS2-ts heterostructure via multiple-step methodology. First, thin sheets of MoSe2 are synthesized following the stepwise hydrothermal method. After the successful synthesis of MoSe2-ts, MoS2-ts is synthesized on it to develop the heterostructure: MoSe2-ts@MoS2-ts. By tuning the amount of MoS2-ts and MoSe2-ts in the heterostructure separately, the optimum condition is obtained for HER. The unique heterostructure is efficient for HER under wide pH conditions like 1 M KOH, pH-7 phosphate buffer, 3.5% saline water, and finally 0.5 M H2SO4. MoSe2-ts@MoS2-ts can generate 10 mA/cm2 current density under the application of -0.186 V vs RHE with a low Tafel value of 71 mV/decade. The formation of the heterojunction plays an essential role in facilitating charge transportation. Furthermore, the heterostructure provides the more active sites for the adsorption of hydrogen to generate H2. An excess amount of any of the bare counter parts in the heterostructure leads to a decrease in electrocatalytic efficiency because of the lowered heterojuction formation. MoSe2-ts@MoS2-ts has very high stability during the electrocatalytic reaction, which is determined from 1000 consecutive cycles and a 24 h prolonged scan. MoSe2-ts@MoS2-ts can generate 147 µmol of H2 in ∼50 min of reaction time with 100% Faradaic efficiency.

6.
J Colloid Interface Sci ; 534: 131-141, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30216833

RESUMO

In this present study we have developed method for the synthesis of MoSe2 nanosheets following a simple hydrothermal technique. Palladium (Pd) and rhodium (Rh) nanoparticles were decorated on the surface of MoSe2 following a simple wet-chemical route. Pd and Rh nanoparticles decorated MoSe2 were applied for hydrogen evolution reaction (HER) in different pH conditions like acidic (0.5 M H2SO4), neutral (pH-7 buffer) and in alkaline (1 M KOH) medium and 3.5 wt% of saline water. Pd and Rh decorated MoSe2 show efficient activity towards HER irrespective of the applied electrolyte. In 0.5 M H2SO4, MoSe2 can produce 10 mA/cm2 current density with applied potential of -0.256 V vs. RHE. Rh decorated MoSe2 shows more shift in the onset potential. Upon applied potential of -0.192 V vs. RHE, MoSe2/Rh can produce 10 mA/cm2 current density. MoSe2/Rh is electrocatalytically more active than MoSe2/Pd which is established from the calculated electrochemically active surface area (ECSA) value. Significantly lower (47 mV/decade) Tafel value is observed for MoSe2/Rh in 0.5 M H2SO4 which indicates the superior activity. MoSe2/Rh is more stable in neutral and alkaline medium compared to acidic medium and it can retain its own activity even after continuous 12 h reaction.

7.
Chem Asian J ; 13(21): 3204-3211, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30209888

RESUMO

The most important issue in water splitting is the development of efficient, abundant, and cost-effective hydrogen and oxygen evolution catalysts. The development of an efficient electrocatalyst for the hydrogen evolution reaction (HER) under alkaline conditions is described here following a simple hydrothermal route. Here, a method for the synthesis of NiCo2 S4 /Co9 S8 , Co9 S8 , and NiCo2 S4 nanotubes has been developed. The NiCo2 S4 /Co9 S8 heterostructure has been introduced as an efficient electrocatalyst towards HER under alkaline conditions (1.0 m KOH). The vertically aligned nanotube heterostructure (NiCo2 S4 /Co9 S8 ) shows the most efficient activity as compared to bare Co9 S8 and NiCo2 S4 nanotubes. The heterostructure of NiCo2 S4 and Co9 S8 shows a significant anodic shift in the onset potential compared to the bare counterpart. NiCo2 S4 /Co9 S8 can generate a current density of 10 mA cm-2 upon application of only -0.172 V vs. RHE, whereas Co9 S8 and NiCo2 S4 require -0.293 V and -0.239 V vs. RHE, respectively. The heterostructure formation and the nanotube morphology of Co9 S8 and NiCo2 S4 facilitates a fast charge transportation which results in higher electrocatalytic activity. The hydrogen gas evolution rate of the NiCo2 S4 /Co9 S8 heterostructure was determined to be 2.29 µmol min-1 .

8.
J Colloid Interface Sci ; 530: 264-273, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29982018

RESUMO

Highly active, stable electrocatalyst for oxygen evolution reaction (OER) is sincerely required for the practical application of water splitting to get rid from the sluggish reaction kinetics and the stability issue. Here, Co3O4 is studied as OER catalyst and to improve the electrocatalytic activity, carbon is chosen as the conducting support. A simple and cost-effective synthetic route is developed for the synthesis of Co3O4 on carbon support following hydrothermal route using various hydrolyzing agents. The heterostructure 'Co3O4/C' perform well in OER as a non-precious metal catalyst. The best Co3O4/C electrocatalyst can generate 10 and 30 mA/cm2 current densities upon application of 1.623 V and 1.678 V vs. RHE whereas, bare Co3O4 can generate current density of 10 and 30 mA/cm2 upon application of 1.677 and 1.754 V vs. RHE. Carbon in the heterostructure helps to improve the conductivity and at the same time enhances the charge transfer ability which further leads to increase current density and stability to the catalyst. Co3O4/C can generate unaltered current density up to 1000 cycles.

9.
Langmuir ; 33(13): 3178-3186, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28298086

RESUMO

Different metal chalcogenides, being a potential candidate for hydrogen evolution catalysts, have attracted enormous attention in the field of water splitting. In the present study, Ag2S/Ag is revealed as an efficient catalyst for hydrogen evolution. When a sacrificial template of the CuS nanostructure is used, Ag2S/Ag heterostructures are synthesized following a simple wet-chemical technique. Two different routes, wet chemical and hydrothermal, are followed to modulate the morphology of the CuS templates from flower ball to wirelike structures, which subsequently results in the formation of Ag2S nanostructure. Finally, the Ag layer is deposited on Ag2S with the help of a photoreduction technique. The unique heterostructure of Ag2S/Ag shows efficient catalytic activity in the H2 evolution reaction. A Ag2S/Ag wire can successfully generate a 10 mA/cm2 current density at a -0.199 V potential. Ag2S/Ag contains the micronanostructure where nanoplates of Ag2S/Ag assemble to give rise to microstructures such as flower balls and wire.

10.
ACS Omega ; 2(11): 7559-7567, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457317

RESUMO

Development of a stable catalyst that can efficiently function for longer time for energy conversion process in water splitting is a challenging work. Here, NiCo2O4/NiO nanosheets are successfully synthesized following a simple wet-chemical route, followed by the combustion technique. Finally, the synthesized catalyst NiCo2O4/NiO can function as an efficient catalyst for oxygen evolution reaction. Nanosheets with interconnections are very useful for better electron transportation because the pores in between the sheets are useful for the diffusion of electrolyte in electrocatalysis. In oxygen evolution reaction, these sheets can generate current densities of 10 and 20 mA/cm2, respectively, upon application of 1.59 and 1.62 V potential versus reversible hydrogen electrode (RHE) under alkaline condition. In contrast, bare NiCo2O4 nanowire bundles can generate a current density of 10 mA/cm2 upon application of 1.66 V versus RHE. The presence of NiO in NiCo2O4/NiO nanosheets helps to increase the conductivity, which further increases the electrocatalytic activity of NiCo2O4/NiO nanosheets.

11.
Sci Rep ; 6: 34738, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703212

RESUMO

An efficient Hydrogen evolution catalyst has been developed by decorating Au nanoparticle on the surface of CuS nanostructure following a green and environmental friendly approach. CuS nanostructure is synthesized through a simple wet-chemical route. CuS being a visible light photocatalyst is introduced to function as an efficient reducing agent. Photogenerated electron is used to reduce Au(III) on the surface of CuS to prepare CuS/Au heterostructure. The as-obtained heterostructure shows excellent performance in electrochemical H2 evolution reaction with promising durability in acidic condition, which could work as an efficient alternative for novel metals. The most efficient CuS-Au heterostructure can generate 10 mA/cm2 current density upon application of 0.179 V vs. RHE. CuS-Au heterostructure can also perform as an efficient photocatalyst for the degradation of organic pollutant. This dual nature of CuS and CuS/Au both in electrocatalysis and photocatalysis has been unveiled in this study.

12.
ACS Appl Mater Interfaces ; 8(40): 26690-26696, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27635665

RESUMO

An efficient H2 evolution catalyst is developed by grafting CoSe2 nanorods into C3N4 nanosheets. The as-obtained C3N4-CoSe2 heterostructure can show excellent performance in H2 evolution with outstanding durability. To generate phatocathode for photoelectrochemical water splitting CoSe2 grafted in C3N4 was decorated on the top of p-Si microwires (MWs). p-Si/C3N4-CoSe2 heterostructure can work as an efficient photocathode material for solar H2 production in PEC water splitting. In 0.5 M H2SO4, p-Si/C3N4-CoSe2 can afford photocurrent density -4.89 mA/cm2 at "0" V vs RHE and it can efficiently work for 3.5 h under visible light. Superior activity of C3N4-CoSe2 compared to CoSe2 toward H2 evolution is explained with the help of impedance spectroscopy.

13.
Langmuir ; 32(39): 10054-10064, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27610832

RESUMO

In this study, we report the synthesis of monometallic (Au and Pd) and bimetallic (AuPd) nanoparticles (NPs) using graphitic carbon nitride (g-C3N4) quantum dots (QDs) and photochemical routes. Eliminating the necessity of any extra stabilizer or reducing agent, the photochemical reactions have been carried out using a UV light source of 365 nm where C3N4 QD itself functions as a suitable stabilizer as well as a reducing agent. The g-C3N4 QDs are excited upon irradiation with UV light and produce photogenerated electrons, which further facilitate the reduction of metal ions. The successful formation of Au, Pd, and AuPd alloy nanoparticles is evidenced by UV-vis, powder X-ray diffraction, X-ray photon spectroscopy, and energy-dispersive spectroscopy techniques. The morphology and distribution of metal nanoparticles over the C3N4 QD surface has been systematically investigated by high-resolution transmission electron microscopy (HRTEM) and SAED analysis. To explore the catalytic activity of the as-prepared samples, the reduction reaction of 4-nitrophenol with excellent performance is also investigated. It is noteworthy that the synthesis of both monometallic and bimetallic NPs can be accomplished by using a very small amount of g-C3N4, which can be used as a promising photoreducing material as well as a stabilizer for the synthesis of various metal nanoparticles.

14.
ACS Appl Mater Interfaces ; 8(8): 5400-7, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26859427

RESUMO

This study employed silicon@cobalt dichalcogenide microwires (MWs) as wide range pH-tolerable photocathode material for solar water splitting. Silicon microwire arrays were fabricated through lithography and dry etching technologies. Si@Co(OH)2 MWs were utilized as precursors to synthesize Si@CoX2 (X = S or Se) photocathodes. Si@CoS2 and Si@CoSe2 MWs were subsequently prepared by thermal sulfidation and hydrothermal selenization reaction of Si@Co(OH)2, respectively. The CoX2 outer shell served as cocatalyst to accelerate the kinetics of photogenerated electrons from the underlying Si MWs and reduce the recombination. Moreover, the CoX2 layer completely deposited on the Si surface functioned as a passivation layer by decreasing the oxide formation on Si MWs during solar hydrogen evolution. Si@CoS2 photocathode showed a photocurrent density of -3.22 mA cm(-2) at 0 V (vs RHE) in 0.5 M sulfuric acid electrolyte, and Si@CoSe2 MWs revealed moderate photocurrent density of -2.55 mA cm(-2). However, Si@CoSe2 presented high charge transfer efficiency in neutral and alkaline electrolytes. Continuous chronoamperometry in acid, neutral, and alkaline solutions was conducted at 0 V (vs RHE) to evaluate the photoelectrochemical durability of Si@CoX2 MWs. Si@CoS2 electrode showed no photoresponse after the chronoamperometry test because it was etched through the electrolyte. By contrast, the photocurrent density of Si@CoSe2 MWs gradually increased to -5 mA cm(-2) after chronoamperometry characterization owing to the amorphous structure generation.

15.
Chem Commun (Camb) ; 51(95): 17012-5, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26451395

RESUMO

Cobalt ditelluride nanoparticles in a diameter range of 20-50 nm were synthesized as a new electrocatalyst for the hydrogen evolution reaction in 0.50 M H2SO4(aq). These nanoparticles can generate -10 mA cm(-2) at an overpotential of 246 mV without any decay up to 48 h of continuous reaction.

16.
Angew Chem Int Ed Engl ; 54(21): 6211-6, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25925794

RESUMO

Development of a solar water splitting device requires design of a low-cost, efficient, and non-noble metal compound as alternative to noble metals. For the first time, we showed that CoSe2 can function as co-catalyst in phototoelectrochemical hydrogen production. We designed a heterostructure of p-Si and marcasite-type CoSe2 for solar-driven hydrogen production. CoSe2 successively coupled with p-Si can act as a superior photocathode in the solar-driven water splitting reaction. Photocurrents up to 9 mA cm(-2) were achieved at 0 V vs. reversible hydrogen electrode. Electrochemical impedance spectroscopy showed that the high photocurrents can be attributed to low charge transfer resistance between the Si and CoSe2 interfaces and that between the CoSe2 and electrolyte interfaces. Our results suggest that this CoSe2 is a promising alternative co-catalyst for hydrogen evolution.

17.
Chem Commun (Camb) ; 51(3): 549-52, 2015 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-25412283

RESUMO

We prepared Ag-Si microflowers as the photocathode for water splitting through a facile chemical method. The photocurrent and the hydrogen evolution rate of partially Ag particle decorated-Si microwires were enhanced through the synergistic effects of Ag co-catalytic and plasmonic assistance.

18.
J Colloid Interface Sci ; 398: 13-21, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23473571

RESUMO

The article reports a simple photoactivation technique for the synthesis of chain like assembly of spherical Au nanocrystals using a nontoxic biochemical, ß-cyclodextrin under ~365 nm UV-light irradiation. Under UV irradiation, ß-cyclodextrin acts as a reducing as well as capping agent and eventually becomes a stabilizing linker for Au nanoparticles. The UV-visible spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and X-ray photoelectron spectroscopic techniques are employed to systematically characterize the Au nanochains. Additionally, it is shown that the Au nanocrystals act as an effective catalyst for the reduction in nitrobenzene to aniline and methylene blue to leuco methylene blue in presence of suitable reducing agent. The catalytic reduction reactions and kinetic parameters are evaluated from UV-visible spectroscopy.

19.
Chemistry ; 18(20): 6335-42, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22473800

RESUMO

In the present study, surface-enhanced Raman spectra of a bifunctional Raman reporter, 2-mercaptobenzimidazole, has been found to be responsive exclusively towards Cu(2+) ions while the reporter remains anchored on the Au nanoparticle surface. Thus a specific Cu(2+)-ion-detection protocol emerges. The simplicity, sensitivity, and reproducibility of the method allow routine and quantitative detection of Cu(2+) ions. An interference study involving a wide number of other metal ions shows the procedure to be uniquely selective and analytically rigorous. A theoretical study was carried out to corroborate the experimental results. Finally, the method is promising for real-time assessment of Cu(2+) ions in aqueous samples and also has the ability to discriminate Cu(I) and Cu(II) ions in solution.


Assuntos
Benzimidazóis/química , Cobre/análise , Nanopartículas/química , Análise Espectral Raman/métodos , Ouro/química , Estrutura Molecular , Soluções/química , Estados Unidos , United States Environmental Protection Agency , Água
20.
J Phys Condens Matter ; 23(50): 506004, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22129648

RESUMO

We report the magnetic proximity effect in a ferrimagnetic Fe(3)O(4) core/ferrimagnetic γ-Mn(2)O(3) shell nanoparticle system, in terms of an enhancement of the Curie temperature (T(c)) of the γ-Mn(2)O(3) shell (~66 K) compared to its bulk value (~40 K), and the presence of magnetic ordering in its so-called paramagnetic region (i.e. above 66 K). The ferrimagnetic nature of both core and shell has been found from a neutron diffraction study. The origin of these two features of the magnetic proximity effect has been ascribed to the proximity of the γ-Mn(2)O(3) shell with a high-T(c) Fe(3)O(4) core (~858 K in bulk form) and an interface exchange coupling between core and shell. Interestingly, we did not observe any exchange bias effect, which has been interpreted as a signature of a weak interface exchange coupling between core and shell. The present study brings out the importance of the relative strength of the interface coupling in governing the simultaneous occurrence of the magnetic proximity effect and the exchange bias phenomenon in a single system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...