Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(6): 8565-8574, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35109651

RESUMO

The effect of the stacking sequence on magnetic and superconducting properties in La0.67Sr0.33MnO3 (LSMO)/YBa2Cu3O7-δ (YBCO) and LSMO/SrTiO3/YBCO heterostructures, which consequently affected the magnetic proximity effect (MPE), was investigated using spin-polarized neutron reflectivity experiments. The results established the intrinsic nature of MPE and its correlation with stacking sequence-dependent magnetic and superconducting properties in these oxide heterostructure systems. We found an increase in the superconducting transition temperature (Tsc) and magnetization for both of the heterostructures as compared to heterostructures with a reversed stacking order. The evolution of the magnetization of the interfacial ferromagnetic (FM) layer, studied as a function of temperature for both heterostructures, showed a decrease in the MPE-induced magnetic depleted layer thickness for heterostructures at a higher Tsc. A comparison of the results of different studies with the present results suggested that the average magnetization and transition temperatures of a FM and a superconductor (SC) were important parameters that dictate the strength of the proximity effect due to the complex interaction of SC and FM in these systems. Tuning the strength of MPE in FM/SC and FM/I/SC oxide heterostructures may provide a promising platform for the effective realization of devices.

2.
Nanotechnology ; 29(19): 195703, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29461256

RESUMO

Recently high density (HD) nonmagnetic cobalt has been discovered in a nanoscale cobalt thin film, grown on Si(111) single crystal. This form of cobalt is not only nonmagnetic but also superconducting. These promising results have encouraged further investigations of the growth of the nonmagnetic (NM) phase of cobalt. In the original investigation, the cobalt film had a natural cobalt oxide at the top. We have investigated whether the growth of HD NM cobalt layers in the thin film depends on (i) a capping layer on the cobalt film, (ii) the thickness of the cobalt film and (iii) the nature of the substrate on which the cobalt film is grown. The results of such investigations indicate that for cobalt films capped with a thin gold layer, and for various film thicknesses, HD NM cobalt layers are formed. However, instead of a Si substrate, when the cobalt films are grown on oxide substrates, such as silicon oxide or cobalt oxide, HD NM cobalt layers are not formed. The difference is attributed to the nature-crystalline or amorphous-of the substrate.

3.
ACS Appl Mater Interfaces ; 8(5): 3376-85, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26761590

RESUMO

Influence of substrate temperature on growth modes of copper phthalocyanine (CuPc) thin films at the dielectric/semiconductor interface in organic field effect transistors (OFETs) is investigated. Atomic force microscopy (AFM) imaging at the interface reveals a change from 'layer+island' to "island" growth mode with increasing substrate temperatures, further confirmed by probing the buried interfaces using X-ray reflectivity (XRR) and positron annihilation spectroscopic (PAS) techniques. PAS depth profiling provides insight into the details of molecular ordering while positron lifetime measurements reveal the difference in packing modes of CuPc molecules at the interface. XRR measurements show systematic increase in interface width and electron density correlating well with the change from layer + island to coalesced huge 3D islands at higher substrate temperatures. Study demonstrates the usefulness of XRR and PAS techniques to study growth modes at buried interfaces and reveals the influence of growth modes of semiconductor at the interface on hole and electron trap concentrations individually, thereby affecting hysteresis and threshold voltage stability. Minimum hole trapping is correlated to near layer by layer formation close to the interface at 100 °C and maximum to the island formation with large voids between the grains at 225 °C.

4.
ACS Appl Mater Interfaces ; 7(32): 17713-24, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26225901

RESUMO

The room temperature chemiresistive response of n-type ZnO nanowire (ZnO NWs) films modified with different thicknesses of p-type cobalt phthalocyanine (CoPc) has been studied. With increasing thickness of CoPc (>15 nm), heterojunction films exhibit a transition from n- to p-type conduction due to uniform coating of CoPc on ZnO. The heterojunction films prepared with a 25 nm thick CoPc layer exhibit the highest response (268% at 10 ppm of H2S) and the fastest response (26 s) among all samples. The X-ray photoelectron spectroscopy and work function measurements reveal that electron transfer takes place from ZnO to CoPc, resulting in formation of a p-n junction with a barrier height of 0.4 eV and a depletion layer width of ∼8.9 nm. The detailed XPS analysis suggests that these heterojunction films with 25 nm thick CoPc exhibit the least content of chemisorbed oxygen, enabling the direct interaction of H2S with the CoPc molecule, and therefore exhibit the fastest response. The improved response is attributed to the high susceptibility of the p-n junctions to the H2S gas, which manipulates the depletion layer width and controls the charge transport.

5.
ACS Appl Mater Interfaces ; 7(19): 10169-77, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25922969

RESUMO

Surface engineering of SiO2 dielectric using different self-assembled monolayer (SAM) has been carried out, and its effect on the molecular packing and growth behavior of copper phthalocyanine (CuPc) has been studied. A correlation between the growth behavior and performance of organic field effect transistors is examined. Depth profiling using positron annihilation and X-ray reflectivity techniques has been employed to characterize the interface between CuPc and the modified and/or unmodified dielectric. We observe the presence of structural defects or disorder due to disorientation of CuPc molecules on the unmodified dielectric and ordered arrangement on the modified dielectrics, consistent with the high charge carrier mobility in organic field effect transistors in the latter. The study also highlights the sensitivity of these techniques to the packing of CuPc molecules on SiO2 modified using different SAMs. Our study also signifies the sensitivity and utility of these two techniques in the characterization of buried interfaces in organic devices.

6.
J Phys Condens Matter ; 21(5): 055010, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21817297

RESUMO

Diffuse (off-specular) neutron and x-ray reflectometry has been used extensively for the determination of interface morphology in solids and liquids. For neutrons, a novel possibility is off-specular reflectometry with polarized neutrons to determine the morphology of a magnetic interface. There have been few such attempts due to the lower brilliance of neutron sources, though magnetic interaction of neutrons with atomic magnetic moments is much easier to comprehend and easily tractable theoretically. We have obtained a simple and physically meaningful expression, under the Born approximation, for analyzing polarized diffuse (off-specular) neutron reflectivity (PDNR) data. For the first time PDNR data from a Ni film have been analyzed and separate chemical and magnetic morphologies have been quantified. Also specular polarized neutron reflectivity measurements have been carried out to measure the magnetic moment density profile of the Ni film. The fit to PDNR data results in a longer correlation length for in-plane magnetic roughness than for chemical (structural) roughness. The magnetic interface is smoother than the chemical interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...