Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 146(5): 685-705, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740734

RESUMO

Oxidative stress plays an essential role in the development of Parkinson's disease (PD). 8-oxo-7,8-dihydroguanine (8-oxodG, oxidized guanine) is the most abundant oxidative stress-mediated DNA lesion. However, its contributing role in underlying PD pathogenesis remains unknown. In this study, we hypothesized that 8-oxodG can generate novel α-synuclein (α-SYN) mutants with altered pathologic aggregation through a phenomenon called transcriptional mutagenesis (TM). We observed a significantly higher accumulation of 8-oxodG in the midbrain genomic DNA from PD patients compared to age-matched controls, both globally and region specifically to α-SYN. In-silico analysis predicted that forty-three amino acid positions can contribute to TM-derived α-SYN mutation. Here, we report a significantly higher load of TM-derived α-SYN mutants from the midbrain of PD patients compared to controls using a sensitive PCR-based technique. We found a novel Serine42Tyrosine (S42Y) α-SYN as the most frequently detected TM mutant, which incidentally had the highest predicted aggregation score amongst all TM variants. Immunohistochemistry of midbrain sections from PD patients using a newly characterized antibody for S42Y identified S42Y-laden Lewy bodies (LB). We further demonstrated that the S42Y TM variant significantly accelerates WT α-SYN aggregation by cell and recombinant protein-based assays. Cryo-electron tomography revealed that S42Y exhibits considerable conformational heterogeneity compared to WT fibrils. Moreover, S42Y exhibited higher neurotoxicity compared to WT α-SYN as shown in mouse primary cortical cultures and AAV-mediated overexpression in the substantia nigra of C57BL/6 J mice. To our knowledge, this is the first report describing the possible contribution of TM-generated mutations of α-SYN to LB formation and PD pathogenesis.


Assuntos
Doença de Parkinson , Humanos , Animais , Camundongos , Doença de Parkinson/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Camundongos Endogâmicos C57BL , Mutagênese , DNA
2.
Int Neurourol J ; 26(Suppl 2): S85-93, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36503211

RESUMO

PURPOSE: Deregulation of SNCA encoding α-synuclein (α-SYN) has been associated with both the familial and sporadic forms of Parkinson disease (PD). Epigenetic regulation plays a crucial role in PD. The intron1 of SNCA harbors a large unmethylated CpG island. Ten-eleven translocation methylcytosine dioxygenase 1 (TET1), a CpG island binding protein, can repress gene expression by occupying hypomethylated CpG-rich promoters, and therefore SNCA could be a target for TET1. We investigated whether TET1 binds to SNCA-intron1 and regulates gene expression. METHODS: The dopaminergic neuronal cell line, ReNcell VM, was used. Reverse transcription-polymerase chain reaction (RT-PCR), real time-quantitative PCR, Western blot, dot-blot, and Chromatin immunoprecipitation were conducted. The substantia nigra tissues of postmortem PD samples were used to confirm the level of TET1 expression. RESULTS: In the human dopaminergic cell line, ReNcell VM, overexpression of the DNA-binding domain of TET1 (TET1-CXXC) led to significant repression of α-SYN. On the contrary, knocking down of TET1 led to significantly higher expression of α-SYN. However, overexpression of the DNA-hydroxymethylating catalytic domain of TET1 failed to change the expression of α-SYN. Altogether, we showed that TET1 is a repressor for SNCA, and a CXXC domain of TET1 is the primary mediator for this repressive action independent of its hydroxymethylation activity. TET1 levels in PD patients are significantly lower than that in the controls. CONCLUSION: We identified that TET1 acts as a repressor for SNCA by binding the intron1 regions of the gene. As a high level of α-SYN is strongly implicated in the pathogenesis of PD, discovering a repressor for the gene encoding α-SYN is highly important for developing novel therapeutic strategies for the disease.

3.
EMBO Mol Med ; 13(2): e12188, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33428332

RESUMO

Epigenetic deregulation of α-synuclein plays a key role in Parkinson's disease (PD). Analysis of the SNCA promoter using the ENCODE database revealed the presence of important histone post-translational modifications (PTMs) including transcription-promoting marks, H3K4me3 and H3K27ac, and repressive mark, H3K27me3. We investigated these histone marks in post-mortem brains of controls and PD patients and observed that only H3K4me3 was significantly elevated at the SNCA promoter of the substantia nigra (SN) of PD patients both in punch biopsy and in NeuN-positive neuronal nuclei samples. To understand the importance of H3K4me3 in regulation of α-synuclein, we developed CRISPR/dCas9-based locus-specific H3K4me3 demethylating system where the catalytic domain of JARID1A was recruited to the SNCA promoter. This CRISPR/dCas9 SunTag-JARID1A significantly reduced H3K4me3 at SNCA promoter and concomitantly decreased α-synuclein both in the neuronal cell line SH-SY5Y and idiopathic PD-iPSC derived dopaminergic neurons. In sum, this study indicates that α-synuclein expression in PD is controlled by SNCA's histone PTMs and modulation of the histone landscape of SNCA can reduce α-synuclein expression.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , alfa-Sinucleína , Neurônios Dopaminérgicos , Código das Histonas , Humanos , Doença de Parkinson/genética , alfa-Sinucleína/genética
4.
Acta Neuropathol ; 140(1): 25-47, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32333098

RESUMO

Alzheimer's disease (AD) is an incurable neurodegenerative disease that is more prevalent in women. The increased risk of AD in women is not well understood. It is well established that there are sex differences in metabolism and that metabolic alterations are an early component of AD. We utilized a cross-species approach to evaluate conserved metabolic alterations in the serum and brain of human AD subjects, two AD mouse models, a human cell line, and two Caenorhabditis elegans AD strains. We found a mitochondrial complex I-specific impairment in cortical synaptic brain mitochondria in female, but not male, AD mice. In the hippocampus, Polß haploinsufficiency caused synaptic complex I impairment in male and female mice, demonstrating the critical role of DNA repair in mitochondrial function. In non-synaptic, glial-enriched, mitochondria from the cortex and hippocampus, complex II-dependent respiration increased in female, but not male, AD mice. These results suggested a glial upregulation of fatty acid metabolism to compensate for neuronal glucose hypometabolism in AD. Using an unbiased metabolomics approach, we consistently observed evidence of systemic and brain metabolic remodeling with a shift from glucose to lipid metabolism in humans with AD, and in AD mice. We determined that this metabolic shift is necessary for cellular and organismal survival in C. elegans, and human cell culture AD models. We observed sex-specific, systemic, and brain metabolic alterations in humans with AD, and that these metabolite changes significantly correlate with amyloid and tau pathology. Among the most significant metabolite changes was the accumulation of glucose-6-phosphate in AD, an inhibitor of hexokinase and rate-limiting metabolite for the pentose phosphate pathway (PPP). Overall, we identified novel mechanisms of glycolysis inhibition, PPP, and tricarboxylic acid cycle impairment, and a neuroprotective augmentation of lipid metabolism in AD. These findings support a sex-targeted metabolism-modifying strategy to prevent and treat AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Distúrbios no Reparo do DNA/metabolismo , Mitocôndrias/metabolismo , Caracteres Sexuais , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Caenorhabditis elegans , Distúrbios no Reparo do DNA/patologia , Metabolismo Energético/fisiologia , Feminino , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Mitocôndrias/patologia
5.
Mech Ageing Dev ; 186: 111207, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31923475

RESUMO

Aging is associated with multiple human pathologies. In the past few years mitochondrial homeostasis has been well correlated with age-related disorders and longevity. Mitochondrial homeostasis involves generation, biogenesis and removal of dysfunctional mitochondria via mitophagy. Mitophagy is regulated by various mitochondrial and extra-mitochondrial factors including morphology, oxidative stress and DNA damage. For decades, DNA damage and inefficient DNA repair have been considered as major determinants for age-related disorders. Although defects in DNA damage recognition and repair and mitophagy are well documented to be major factors in age-associated diseases, interactivity between these is poorly understood. Mitophagy efficiency decreases with age leading to accumulation of dysfunctional mitochondria enhancing the severity of age-related disorders including neurodegenerative diseases, inflammatory diseases, cancer, diabetes and many more. Therefore, mitophagy is being targeted for intervention in age-associated disorders. NAD+ supplementation has emerged as one intervention to target both defective DNA repair and mitophagy. In this review, we discuss the molecular signaling pathways involved in regulation of DNA damage and repair and of mitophagy, and we highlight the opportunities for clinical interventions targeting these processes to improve the quality of life during aging.


Assuntos
Envelhecimento/fisiologia , Dano ao DNA , Mitofagia/fisiologia , Envelhecimento/genética , Reparo do DNA , Humanos , Transdução de Sinais
6.
Anal Chem ; 89(24): 13044-13048, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29172450

RESUMO

Alpha-synuclein (α-SYN) is a central molecule in Parkinson's disease pathogenesis. Despite several studies, the molecular nature of endogenous α-SYN especially in human brain samples is still not well understood due to the lack of reliable methods and the limited amount of biospecimens. Here, we introduce α-SYN single-molecule pull-down (α-SYN SiMPull) assay combined with in vivo protein crosslinking to count individual α-SYN protein and assess its native oligomerization states from biological samples including human postmortem brains. This powerful single-molecule assay can be highly useful in diagnostic applications using various specimens for neurodegenerative diseases including Alzheimer's disease and Parkinson's disease.


Assuntos
Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , alfa-Sinucleína/análise , Células Cultivadas , Células HEK293 , Humanos , Doenças Neurodegenerativas/diagnóstico , alfa-Sinucleína/metabolismo
7.
Sci Rep ; 8: 45883, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374838

RESUMO

α-synuclein (α-SYN) is a major pathologic contributor to Parkinson's disease (PD). Multiplication of α-SYN encoding gene (SNCA) is correlated with early onset of the disease underlining the significance of its transcriptional regulation. Thus, monitoring endogenous transcription of SNCA is of utmost importance to understand PD pathology. We developed a stable cell line expressing α-SYN endogenously tagged with NanoLuc luciferase reporter using CRISPR/Cas9-mediated genome editing. This allows efficient measurement of transcriptional activity of α-SYN in its native epigenetic landscape which is not achievable using exogenous transfection-based luciferase reporter assays. The NanoLuc activity faithfully monitored the transcriptional regulation of SNCA following treatment with different drugs known to regulate α-SYN expression; while exogenous promoter-reporter assays failed to reproduce the similar outcomes. To our knowledge, this is the first report showing endogenous monitoring of α-SYN transcription, thus making it an efficient drug screening tool that can be used for therapeutic intervention in PD.


Assuntos
Edição de Genes/métodos , Doença de Parkinson/tratamento farmacológico , Transcrição Gênica , alfa-Sinucleína/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica , Humanos , Luciferases/química , Luciferases/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Regiões Promotoras Genéticas , Transfecção
8.
Mol Brain ; 10(1): 6, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28173842

RESUMO

Deregulation of α-synuclein encoding gene (SNCA) is one of the important facets of Parkinson's disease (PD) research. DNA methylation status of SNCA-intron1 has been shown to regulate the α-synuclein expression. The present study is aimed at investigating whether methylation of SNCA-intron1 is associated with higher expression of α-synuclein in PD. We have investigated the intron1 methylation status from 16 post-mortem brain samples comprised of 8 PD and 8 control subjects using bisulfite sequencing. We further correlated this methylation status with α-synuclein protein levels in substantia nigra of that individual using western blot analysis. We did not observe any significant difference in methylation of SNCA-intron1 region between PD and control samples. Moreover, no correlation was observed between methylation of SNCA-intron1 with α-synuclein level. Methylation of SNCA-intron1 region does not correlate with α-synuclein expression in PD samples.


Assuntos
Metilação de DNA/genética , Íntrons/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Estudos de Casos e Controles , Humanos , Pessoa de Meia-Idade
9.
Exp Mol Med ; 47: e179, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26315598

RESUMO

Parkinson's disease (PD) is an age-related progressive neurodegenerative disease associated with selective loss of dopaminergic neurons. The characteristic hallmark of the disease is intracytoplasmic proteinacious inclusion bodies called Lewy bodies, primarily consisting of a presynaptic protein α-synuclein. Oxidative stress-mediated damage to macromolecules have been shown to occur frequently in PD. Oxidative damage to DNA in the form of oxidized guanine (8-oxodG) accumulates in both the mitochondrial and nuclear DNA of dopaminergic neurons of the substantia nigra in PD. 8-oxodG-mediated transcriptional mutagenesis has been shown to have the potential to alter phenotype of cells through production of mutant pool of proteins. This review comprehensively summarizes the role of oxidative stress-mediated damage incurred during neurodegeneration, and highlights the scope of transcriptional mutagenesis event in leading to α-synuclein aggregation as seen in PD.


Assuntos
Desoxiguanosina/análogos & derivados , Estresse Oxidativo , Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , Substância Negra/patologia , alfa-Sinucleína/genética , 8-Hidroxi-2'-Desoxiguanosina , Sequência de Aminoácidos , Animais , Desoxiguanosina/metabolismo , Humanos , Dados de Sequência Molecular , Mutagênese , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Substância Negra/metabolismo , Transcrição Gênica , alfa-Sinucleína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...