Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Ther Targets ; 27(4-5): 305-324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37243489

RESUMO

INTRODUCTION: Epidermal growth factor receptor (EGFR) is frequently amplified, overexpressed, and mutated in multiple cancers. In normal cell physiology, EGFR signaling controls cellular differentiation, proliferation, growth, and survival. During tumorigenesis, mutations in EGFR lead to increased kinase activity supporting survival, uncontrolled proliferation, and migratory functions of cancer cells. Molecular agents targeting the EGFR pathway have been discovered, and their efficacy has been demonstrated in clinical trials. To date, 14 EGFR-targeted agents have been approved for cancer treatments. AREAS COVERED: This review describes the newly identified pathways in EGFR signaling, the evolution of novel EGFR-acquired and innate resistance mechanisms, mutations, and adverse side effects of EGFR signaling inhibitors. Subsequently, the latest EGFR/panEGFR inhibitors in preclinical and clinical studies have been summarized. Finally, the consequences of combining immune checkpoint inhibitors and EGFR inhibitors have also been discussed. EXPERT OPINION: As new mutations are threatened against EGFR-tyrosine kinase inhibitors (TKIs), we suggest the development of new compounds targeting specific mutations without inducing new mutations. We discuss potential future research on developing EGFR-TKIs specific for exact allosteric sites to overcome acquired resistance and reduce adverse events. The rising trend of EGFR inhibitors in the pharma market and their economic impact on real-world clinical practice are discussed.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Transdução de Sinais , Receptores ErbB , Mutação
2.
Cancer Treat Res Commun ; 33: 100635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36155130

RESUMO

The course of clinical management in chronic myeloid leukemia (CML) often faces a road-block in the form of front-line (imatinib) therapy resistance. Subsequently, several hotspot mutations were clinically validated in the kinase domain (KD) of BCR-ABL1, in deterring imatinib sensitivity and further, made targeted by next-generation tyrosine-kinase-inhibitor (TKI) drugs. Identifying KD mutations, occurring even at low frequencies, became pertinent here. Globally, cohorts from different origins were tested and the mutational spectra were mapped to categorize clinical management as well as related pathological features of CML. Moreover, targeted deep sequencing could reveal the mutational landscape more efficiently than the less sensitive Sanger sequencing method. However, no such efforts were reported from Eastern Indian cohorts of imatinib-resistant CML-sufferers. This study assessed a prospective study cohort of imatinib-resistant CML cases from Eastern India. Following dissecting the molecular and clinical parameters, the mutational spectrum was comparatively examined using conventional Sanger and next-generation deep sequencing method. This cohort showed a prevalence of e14a2-p210 variant of BCR-ABL1 and acquired resistance against imatinib, while the disease was mostly confined in its chronic phase. Together with a few common hotspot mutations identified in this cohort, deep sequencing revealed cases with a candidate mutation, otherwise undetermined by Sanger method. Also, cases with a second low frequency mutation were identified upon applying deep sequencing. Along with highlighting a few aspects of CML biology employing an Eastern-Indian cohort, this data could mark the immense importance of deep sequencing to contribute in the clinical management of CML upon front-line therapy resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Estudos de Coortes , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Mutação , Estudos Prospectivos , Índia
3.
Semin Cancer Biol ; 86(Pt 2): 69-80, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36064086

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy characterized by high resistance and poor response to chemotherapy. In addition, the poorly immunogenic pancreatic tumors constitute an immunosuppressive tumor microenvironment (TME) that render immunotherapy-based approaches ineffective. Understanding the mechanisms of therapy resistance, identifying new targets, and developing effective strategies to overcome resistance can significantly impact the management of PDAC patients. Chemokines are small soluble factors that are significantly deregulated during PDAC pathogenesis, contributing to tumor growth, metastasis, immune cell trafficking, and therapy resistance. Thus far, different chemokine pathways have been explored as therapeutic targets in PDAC, with some promising results in recent clinical trials. Particularly, immunotherapies such as immune check point blockade therapies and CAR-T cell therapies have shown promising results when combined with chemokine targeted therapies. Considering the emerging pathological and clinical significance of chemokines in PDAC, we reviewed major chemokine-regulated pathways leading to therapy resistance and the ongoing endeavors to target chemokine signaling in PDAC. This review discusses the role of chemokines in regulating therapy resistance in PDAC and highlights the continuing efforts to target chemokine-regulated pathways to improve the efficacy of various treatment modalities.


Assuntos
Carcinoma Ductal Pancreático , Quimiocinas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Quimiocinas/genética , Quimiocinas/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...