Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(46): 46LT02, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32717737

RESUMO

In the series R2PdSi3, Nd2PdSi3 is an anomalous compound in the sense that it exhibits ferromagnetic order unlike other members in this family. The magnetic ordering temperature is also unusually high compared to the expected value for a Nd-based system, assuming 4f localization. Here, we have studied the electronic structure of single crystalline Nd2PdSi3 employing high resolution photoemission spectroscopy and ab initio band structure calculations. Theoretical results obtained for the effective on-site Coulomb energy of 6 eV corroborate well with the experimental valence band spectra. While there is significant Pd 4d-Nd 4f hybridization, the states near the Fermi level are found to be dominated by hybridized Nd 4f-Si 3p states, which is possibly responsible for the ferromagnetism in Nd compound. Nd 3d core level spectrum exhibits multiple features manifesting strong final state effects due to electron correlation, charge transfer and collective excitations. These results serve as one of the rare demonstrations of hybridization of Nd 4f states with the conduction electrons possibly responsible for the exoticity of this compound.

2.
Sci Rep ; 9(1): 6877, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053796

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

3.
Sci Rep ; 7(1): 8300, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811608

RESUMO

We report the magnetic and dielectric behavior of Pb6Ni9(TeO6)5, a new compound comprising the honeycomb-like layers of S = 1 spins, through detailed structural, magnetic and dielectric investigation. An antiferromagnetic-type transition at 25 K (T N ) with weak-ferromagnetic behavior is revealed. Interestingly, a large value of coercive field of 1.32 T at 2 K is observed. The isothermal magnetization after zero-field-cooled condition, it exhibits the presence of large spontaneous exchange bias (SEB) with a magnitude of 0.19 T at 2 K; which is rare in single bulk materials, especially without external doping. The value of |H EB| further enhances to 0.24 T under 16 T field-cooled condition, confirming the presence of large exchange bias in the material.

4.
J Phys Condens Matter ; 29(8): 085801, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28060774

RESUMO

We report the results of our investigation of magnetic, thermodynamic and dielectric properties of Ca substituted half-doped orthochromite, Dy0.6Ca0.4Fe0.5Cr0.5O3. Magnetic susceptibility and heat capacity data bring out that this compound undergoes two antiferromagnetic transitions, one at ~132 and the other at ~22 K. These values are higher than those of DyFe0.5Cr0.5O3. This finding highlights that non-magnetic hole doping in form of Ca+2 in the place of magnetic Dy+3 tends to enhance magnetic transition temperatures in this half-doped orthochromite. We attribute it to possible change in the valence state of Cr/Fe-ion ions due to hole doping. Dielectric anomalies are also seen near the magnetic ordering temperatures indicating magnetodielectric coupling, which is confirmed by magnetic field dependent dielectric studies. The most notable observation is that magnetodielectric coupling strength gets significantly enhanced as compared to DyFe0.5Cr0.5O3. The results reveal that it is possible to tune magnetodielectric coupling by hole doping in this system.

5.
J Phys Condens Matter ; 28(42): 426003, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27588356

RESUMO

We report the results of our investigations on the influence of partial substitution of Er and Gd for Dy on the magnetic and magnetoelectric properties of DyFe0.5Cr0.5O3, which is known to be a multiferroic system. Magnetic susceptibility and heat capacity data, apart from confirming the occurrence of magnetic transitions at ~121 and 13 K in DyFe0.5Cr0.5O3, bring out that the lower transition temperature only is suppressed by rare-earth substitution. Multiferroic behavior is found to persist in Dy0.4Ln0.6Fe0.5Cr0.5O3 (Ln = Er and Gd). There is an evidence for magnetoelectric coupling in all these materials with qualitative differences in its behavior as the temperature is changed across these two transitions. Remnant electric polarization is observed for all the compounds. The most notable observation is that electric polarization is seen to get enhanced as a result of rare-earth substitution with respect to that in DyFe0.5Cr0.5O3. Interestingly, a similar trend is seen in the magnetocaloric effect, consistent with the existence of magnetoelectric coupling. The results thus provide evidence for the tuning of magnetoelectric coupling by rare-earth substitution in this family of oxides.

6.
Sci Rep ; 4: 5636, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25005869

RESUMO

Observation of ferroelectricity among non-d(0) systems, which was believed for a long time an unrealistic concept, led to various proposals for the mechanisms to explain the same (i.e. magnetically induced ferroelectricity) during last decade. Here, we provide support for ferroelectricity of a displacive-type possibly involving magnetic ions due to short-range magnetic correlations within a spin-chain, through the demonstration of magnetoelectric coupling in a Haldane spin-chain compound Er2BaNiO5 well above its Néel temperature of (TN = ) 32 K. There is a distinct evidence for electric polarization setting in near 60 K around which there is an evidence for short-range magnetic correlations from other experimental methods. Raman studies also establish a softening of phonon modes in the same temperature (T) range and T-dependent x-ray diffraction (XRD) patterns also reveal lattice parameters anomalies. Density-functional theory based calculations establish a displacive component (similar to d(0)-ness) as the root-cause of ferroelectricity from (magnetic) NiO6 chain, thereby offering a new route to search for similar materials near room temperature to enable applications.

7.
J Phys Condens Matter ; 26(17): 172202, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24722401

RESUMO

We report that the spin-chain compound Dy2BaNiO5, recently proven by us to exhibit magnetoelectric coupling below its Néel temperature (TN) of 58 K, exhibits strong frequency-dependent behavior in ac magnetic susceptibility and complex dielectric properties at low temperatures (<10 K), mimicking the 'reentrant' multiglass phenomenon. Such a behavior is not known among undoped compounds. A new finding in the field of multiferroics is that the characteristic magnetic feature at low temperatures moves towards higher temperatures in the presence of a magnetic field (H), whereas the corresponding dielectric feature shifts towards lower temperatures with H, unlike the situation near TN. This observation indicates that the alignment of spins by external magnetic fields tends to inhibit glassy-like slow electric-dipole dynamics, at least in this system, possibly arising from peculiarities in the magnetic structure.


Assuntos
Compostos de Bário/química , Disprósio/química , Campos Magnéticos , Níquel/química , Compostos de Bário/efeitos da radiação , Disprósio/efeitos da radiação , Impedância Elétrica , Teste de Materiais , Níquel/efeitos da radiação , Dinâmica não Linear , Doses de Radiação , Temperatura
8.
J Phys Condens Matter ; 25(49): 496013, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24222434

RESUMO

We have systematically investigated the influence of the gradual replacement of Ca by Gd on the magnetic and complex dielectric properties of the well-known geometrically frustrated spin-chain system Ca3Co2O6 (TN = 24 K with additional magnetic transitions below 12 K), by studying the series Ca3−xGdxCo2O6 (x ≤ 0.7), down to 1.8 K. Heat-capacity measurements establish that the reduction of TN with Gd substitution is much less compared to that by Y substitution. The magnetic moment data reveal that there are changes in the oxidation state of Co as well, unlike for Y substitution, beyond x = 0.2. Thus, despite being isovalent, both these substitutions interestingly differ in changing these magnetic properties in these oxides. We propose that the valence electrons of Y and those of R ions play different roles in deciding the magnetic characteristics of these mixed oxides. It is observed that a small amount (x = 0.3) of Gd substitution for Ca is enough to suppress glassy ac magnetic susceptibility behavior for the peak around 12 K. An additional low-temperature magnetic anomaly close to 5 K gets more prominent with increasing Gd concentration as revealed by heat-capacity data. Trends in temperature dependence of complex dielectric behavior were also tracked with varying composition and a frequency dependence is observed, not only for the transition in the region around 10 K (for some compositions), but also for the 5 K transition which is well resolved for a higher concentration of Gd. Thus, the Gd-substituted Ca3Co2O6 series is shown to reveal interesting magnetic and dielectric behaviors of this family of oxides.

9.
Sci Rep ; 3: 3104, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24173211

RESUMO

We bring out novel dielectric behavior of a spin-chain compound, Ca3Co2O6, undergoing Néel order at (TN = ) 24 K. It is found that the virgin curve in the plot of isothermal dielectric constant (ε') versus magnetic-field lies outside the 'butterfly-shaped' envelope curve well below TN (e.g., 2.6 K), with a signature of a partial arrest of the high-field magnetoelectric (ME) phase in zero-field after travelling through magnetic-field-induced magnetic transitions. This behavior is in contrast to that observed in the isothermal magnetization data. Thus, this work brings out a novel case for 'phase-coexistence phenomenon' due to ME coupling. Another strange finding is that there is a weak, but a broad, peak in ε' around 85-115 K well above TN, attributable to incipient spin-chain magnetic ordering. This finding should inspire further work to study ME coupling on artificial assemblies of magnetic chains, also keeping in mind miniaturization required for possible applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...