Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339217

RESUMO

Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.


Assuntos
Imageamento por Ressonância Magnética , Isótopos de Xenônio , Isótopos de Xenônio/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Solubilidade , Xenônio/química
2.
ACS Sens ; 8(12): 4707-4715, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38064687

RESUMO

Hyperpolarized (HP) xenon-129 (129Xe) magnetic resonance imaging (MRI) has the potential to be used as a molecular imaging modality. For this purpose, numerous supramolecular cages have been developed and evaluated in the past. Herein, we report a novel and unique macrocycle that can be successfully utilized for xenon MRI, the resorcinarene trimer methanesulfonate (R3-Noria-MeSO3H). This molecule is capable of two different contrast mechanisms for xenon-MRI, resulting from an increase in the effective spin-spin relaxation and hyperpolarized chemical exchange saturation transfer (HyperCEST). We have demonstrated a superior negative contrast caused by R3-Noria-MeSO3H on HP 129Xe MRI at 3.0 T as well as HyperCEST imaging of the studied macrocycle. Additionally, we have found that the complex aggregation behaviors of R3-Noria-methanesulfonate and its impact on xenon-129 relaxivity are an area for future study.


Assuntos
Imageamento por Ressonância Magnética , Isótopos de Xenônio , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio/química , Xenônio/química , Meios de Contraste/química , Mesilatos
3.
Chemphyschem ; 24(23): e202300828, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38062347

RESUMO

The front cover artwork is provided by Prof. Mitchell S. Albert's group at Lakehead University. The image shows the hyperpolarized chemical exchange saturation transfer (HyperCEST) effect in cucurbit[6]uril molecular biosensors within a blood vessel. Read the full text of the Research Article at 10.1002/cphc.202300346.

4.
Chemphyschem ; 24(23): e202300346, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37713677

RESUMO

Molecular imaging is the future of personalized medicine; however, it requires effective contrast agents. Hyperpolarized chemical exchange saturation transfer (HyperCEST) can boost the signal of Hyperpolarized 129 Xe MRI and render it a molecular imaging modality of high efficiency. Cucurbit[6]uril (CB6) has been successfully employed in vivo as a contrast agent for HyperCEST MRI, however its performance in a clinical MRI scanner has yet to be optimized. In this study, MRI pulse sequence parameter optimization was first performed in CB6 solutions in phosphate-buffered saline (PBS), and subsequently in whole sterile citrated bovine blood. The performance of four different depolarization pulse shapes (sinusoidal, 3-lobe sinc (3LS), rectangular (block), and hyperbolic secant (hypsec) was optimized. The detectability limits of CB6 in a clinical 3.0T MRI scanner was assessed using the optimized pulse sequences. The 3LS depolarization pulses performed best, and demonstrated 24 % depletion in a 25 µM solution of CB6 in PBS. It performed similarly in blood. The CB6 detectability limit was found to be 100 µM in citrated bovine blood with a correspondent HyperCEST depletion of 30 % ±9 %. For the first time, the HP 129 Xe HyperCEST effect was observed in red blood cells (RBC) and had a similar strength as HyperCEST in plasma.


Assuntos
Imageamento por Ressonância Magnética , Isótopos de Xenônio , Animais , Bovinos , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Xenônio/química , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Imagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...