Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(4): 231286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577218

RESUMO

Invertebrate-derived DNA (iDNA) metabarcoding from carrion flies is a powerful, non-invasive tool that has value for assessing vertebrate diversity. However, unknowns exist around the factors that influence vertebrate detections, such as spatial limits to iDNA signals or if detections are influenced by taxonomic class or estimated biomass of the vertebrates of interest. Using a bulk-collection method, we captured flies from within a zoo and along transects extending 4 km away from this location. From 920 flies, we detected 28 vertebrate species. Of the 28 detected species, we identified 9 species kept at the zoo, 8 mammals and 1 bird, but no reptiles. iDNA detections were highly geographically localized, and only a few zoo animals were detected outside the zoo setting. However, due to the low number of detections in our dataset, we found no influence of the taxonomic group or the estimated biomass of animals on their detectability. Our data suggest that iDNA detections from bulk-collected carrion flies, at least in urban settings in Australia, are predominantly determined by geographic proximity to the sampling location. This study presents an important step in understanding how iDNA techniques can be used in biodiversity monitoring.

2.
iScience ; 27(2): 108904, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38533454

RESUMO

Environmental DNA holds significant promise as a non-invasive tool for tracking terrestrial biodiversity. However, in non-homogenous terrestrial environments, the continual exploration of new substrates is crucial. Here we test the hypothesis that spider webs can act as passive biofilters, capturing eDNA from vertebrates present in the local environment. Using a metabarcoding approach, we detected vertebrate eDNA from all analyzed spider webs (N = 49). Spider webs obtained from an Australian woodland locality yielded vertebrate eDNA from 32 different species, including native mammals and birds. In contrast, webs from Perth Zoo, less than 50 km away, yielded eDNA from 61 different vertebrates and produced a highly distinct species composition, largely reflecting exotic species hosted in the zoo. We show that higher animal biomass and proximity to animal enclosures increased eDNA detection probability in the zoo. Our results indicate a tremendous potential for using spider webs as a cost-effective means to monitor terrestrial vertebrates.

3.
BMC Res Notes ; 16(1): 370, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111014

RESUMO

OBJECTIVE: Roller swabbing of surfaces is an effective way to obtain environmental DNA, but the current DNA extraction method for these samples is equipment heavy, time consuming, and increases potential contamination through multiple handling. Here, we used rollers to swab a dog kennel and compared three DNA extraction approaches (water filtration, roller trimming and direct buffer) using two different platforms (Qiacube, Kingfisher). DNA extraction methods were evaluated based on cost, effort, DNA concentration and PCR result. RESULTS: The roller trim method emerged as the optimal method with the best PCR results, DNA concentration and cost efficiency, while the buffer-based methods were the least labour intensive but produced mediocre PCR results and DNA concentrations. Additionally, the Kingfisher magnetic bead extractions generally ranked higher in all categories over the Qiacube column-based DNA extractions. Ultimately, the ideal DNA extraction method for a particular study is influenced by logistical constraints in the field such as the size of the roller, the availability of cold storage, and time constraints on the project. Our results demonstrate the strengths and weaknesses of each approach, allowing for informed decision making by researchers.


Assuntos
DNA Ambiental , Animais , Cães , DNA/genética , Reação em Cadeia da Polimerase , Água , Técnicas de Amplificação de Ácido Nucleico
4.
Animals (Basel) ; 13(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37627385

RESUMO

Translocation science has made considerable progress over the last two decades; however, reptile translocations still frequently fail around the world. Major knowledge gaps surround the basic ecology of reptile species, including basic factors such as habitat preference, which have a critical influence on translocation success. The western spiny-tailed skink (Egernia stokesii badia) is used here as a case study to exemplify how empirical research can directly inform on-ground management and future translocation planning. A combination of studies, including LiDAR scanning of microhabitat structures, camera trapping, plasticine replica model experiments and unbounded point count surveys to assess predation risk, and visual and DNA analysis of dietary requirements, were all used to better understand the ecological requirements of E. s. badia. We found that the skinks have specific log pile requirements, both native and non-native predator management requirements, and a largely herbivorous, broad diet, which all influence translocation site selection and management planning. The use of E. s. badia as an Australian case study provides a clear strategic framework for the targeted research of meaningful ecological factors that influence translocation decision-making. Similar approaches applied to other reptile species are likely to fundamentally increase the capacity for effective management, and the likelihood of future successful translocations.

5.
Mol Ecol Resour ; 23(7): 1540-1555, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37237427

RESUMO

In the face of global biodiversity declines, surveys of beneficial and antagonistic arthropod diversity as well as the ecological services that they provide are increasingly important in both natural and agro-ecosystems. Conventional survey methods used to monitor these communities often require extensive taxonomic expertise and are time-intensive, potentially limiting their application in industries such as agriculture, where arthropods often play a critical role in productivity (e.g. pollinators, pests and predators). Environmental DNA (eDNA) metabarcoding of a novel substrate, crop flowers, may offer an accurate and high throughput alternative to aid in the detection of these managed and unmanaged taxa. Here, we compared the arthropod communities detected with eDNA metabarcoding of flowers, from an agricultural species (Persea americana-'Hass' avocado), with two conventional survey techniques: digital video recording (DVR) devices and pan traps. In total, 80 eDNA flower samples, 96 h of DVRs and 48 pan trap samples were collected. Across the three methods, 49 arthropod families were identified, of which 12 were unique to the eDNA dataset. Environmental DNA metabarcoding from flowers revealed potential arthropod pollinators, as well as plant pests and parasites. Alpha diversity levels did not differ across the three survey methods although taxonomic composition varied significantly, with only 12% of arthropod families found to be common across all three methods. eDNA metabarcoding of flowers has the potential to revolutionize the way arthropod communities are monitored in natural and agro-ecosystems, potentially detecting the response of pollinators and pests to climate change, diseases, habitat loss and other disturbances.


Assuntos
Artrópodes , DNA Ambiental , Persea , Humanos , Animais , Ecossistema , Artrópodes/genética , Persea/genética , Código de Barras de DNA Taxonômico/métodos , Biodiversidade , Monitoramento Ambiental/métodos
6.
Conserv Biol ; 37(5): e14098, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37186093

RESUMO

Severely fragmented habitats increase the risk of extirpation of native mammal populations through isolation, increased edge effects, and predation. Therefore, monitoring the movement of mammal populations through anthropogenically altered landscapes can inform conservation. We used metabarcoding of invertebrate-derived DNA (iDNA) from carrion flies (Calliphoridae and Sarcophagidae) to track mammal populations in the wheat belt of southwestern Australia, where widespread clearing for agriculture has removed most of the native perennial vegetation and replaced it with an agricultural system. We investigated whether the localization of the iDNA signal reflected the predicted distribution of 4 native species-echidna (Tachyglossus aculeatus), numbat (Myrmecobius fasciatus), woylie (Bettongia penicillata), and chuditch (Dasyurus geoffroii)-and 2 non-native, invasive mammal species-fox (Vulpes vulpes) and feral cat (Felis catus). We collected bulk iDNA samples (n = 150 samples from 3428 carrion flies) at 3 time points from 3 conservation reserves and 35 road edges between them. We detected 14 of the 40 mammal species known from the region, including our target species. Most detections of target taxa were in conservation reserves. There were a few detections from road edges. We detected foxes and feral cats throughout the study area, including all conservation reserves. There was a significant difference between the diversity (F3, 98  = 5.91, p < 0.001) and composition (F3, 43  = 1.72, p < 0.01) of taxa detections on road edges and conservation reserves. Conservation reserves hosted more native biodiversity than road edges. Our results suggest that the signals from iDNA reflect the known distribution of target mammals in this region. The development of iDNA methods shows promise for future noninvasive monitoring of mammals. With further development, iDNA metabarcoding could inform decision-making related to conservation of endangered taxa, invasive species management, and impacts of habitat fragmentation.


Caracterización genética del ADNi de la mosca carroñera para monitorear mamíferos invasores y nativos Resumen Los hábitats con mucha fragmentación aumentan el riesgo de extirpación de las poblaciones de mamíferos nativos debido al aislamiento, el aumento de los efectos de borde y la depredación. Por lo tanto, el monitoreo del movimiento de las poblaciones de mamíferos a través de paisajes alterados antropogénicamente puede guiar a la conservación. Utilizamos la caracterización genética del ADN derivado de invertebrados (ADNi) de moscas de la carroña (Calliphoridae y Sarcophagidae) para rastrear poblaciones de mamíferos en la región de Wheatbelt del suroeste de Australia, en donde la tala generalizada ha sustituido la mayor parte de la vegetación perenne nativa por un sistema agrícola. Investigamos si la localización de la señal de ADNi reflejaba la distribución prevista de cuatro especies autóctonas: equidna (Tachyglossus aculeatus), numbat (Myrmecobius fasciatus), rata canguro (Bettongia penicillata) y cuol occidental (Dasyurus geoffroii), y dos especies de mamíferos invasores no autóctonos: el zorro (Vulpes vulpes) y el gato feral (Felis catus). Recogimos muestras masivas de ADNi (n = 150 muestras de 3,428 moscas de la carroña) en tres puntos temporales de tres reservas ecológicas y 35 bordes de carreteras entre ellas. Detectamos 14 de las 40 especies de mamíferos conocidas en la región, incluidas nuestras especies objetivo. La mayoría de las detecciones de los taxones objetivo se produjeron en las reservas ecológicas. Pocas detecciones ocurrieron en los bordes de las carreteras. Detectamos zorros y gatos ferales en toda la zona de estudio, incluidas todas las reservas ecológicas. Hubo una diferencia significativa entre la diversidad (F3, 98 = 5.91, p<0.001) y la composición (F3, 43 = 1.72, p<0.01) de los taxones detectados en los bordes de las carreteras y en las reservas ecológicas. Las reservas ecológicas albergaron más biodiversidad nativa que los bordes de las carreteras. Nuestros resultados sugieren que las señales de ADNi reflejan la distribución conocida de los mamíferos objetivo en esta región. El desarrollo de métodos de ADNi es prometedor para el futuro monitoreo no invasivo de mamíferos. Con un mayor desarrollo, la caracterización genética del ADNi podría servir de base para decidir sobre la conservación de taxones amenazados, la gestión de especies invasoras y los impactos de la fragmentación del hábitat.


Assuntos
Dípteros , Gatos , Animais , Conservação dos Recursos Naturais , Mamíferos , Raposas , Biodiversidade , Ecossistema , Animais Selvagens , Espécies Introduzidas
7.
Ecol Evol ; 13(4): e10014, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37113520

RESUMO

Biomonitoring is vital for establishing baseline data that is needed to identify and quantify ecological change and to inform management and conservation activities. However, biomonitoring and biodiversity assessment in arid environments, which are predicted to cover 56% of the Earth's land surface by 2100, can be prohibitively time consuming, expensive, and logistically challenging due to their often remote and inhospitable nature. Sampling of environmental DNA (eDNA) coupled with high-throughput sequencing is an emerging biodiversity assessment method. Here we explore the application of eDNA metabarcoding and various sampling approaches to estimate vertebrate richness and assemblage at human-constructed and natural water sources in a semi-arid region of Western Australia. Three sampling methods: sediment samples, filtering through a membrane with a pump, and membrane sweeping in the water body, were compared using two eDNA metabarcoding assays, 12S-V5 and 16smam, for 120 eDNA samples collected from four gnammas (gnamma: Australian Indigenous Noongar language term-granite rock pools) and four cattle troughs in the Great Western Woodlands, Western Australia. We detected higher vertebrate richness in samples from cattle troughs and found differences between assemblages detected in gnammas (more birds and amphibians) and cattle troughs (more mammals, including feral taxa). Total vertebrate richness was not different between swept and filtered samples, but all sampling methods yielded different assemblages. Our findings indicate that eDNA surveys in arid lands will benefit from collecting multiple samples at multiple water sources to avoid underestimating vertebrate richness. The high concentration of eDNA in small, isolated water bodies permits the use of sweep sampling that simplifies sample collection, processing, and storage, particularly when assessing vertebrate biodiversity across large spatial scales.

8.
Oecologia ; 200(3-4): 323-337, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36098815

RESUMO

Urbanisation modifies natural landscapes resulting in built-up space that is covered by buildings or hard surfaces and managed green spaces that often substitute native plant species with exotics. Some native bee species have been able to adapt to urban environments, foraging and reproducing in these highly modified areas. However, little is known on how the foraging ecology of native bees is affected by urbanised environments, and whether impacts vary among species with different degrees of specialisation for pollen collection. Here, we aim to investigate the responses of native bee foraging behaviour to urbanisation, using DNA metabarcoding to identify the resources within nesting tubes. We targeted oligolectic (specialist) and polylectic (generalist) cavity-nesting bee species in residential gardens and remnant bushland habitats. We were able to identify 40 families, 50 genera, and 23 species of plants, including exotic species, from the contents of nesting tubes. Oligolectic bee species had higher diversity of plant pollen in their nesting tubes in residential gardens compared to bushland habitats, along with significantly different forage composition between the two habitats. This result implies a greater degree of forage flexibility for oligolectic bee species than previously thought. In contrast, the diversity and composition of plant forage in polylectic bee nesting tubes did not vary between the two habitat types. Our results suggest a complex response of cavity-nesting bees to urbanisation and support the need for additional research to understand how the shifts in foraging resources impact overall bee health.


Assuntos
Código de Barras de DNA Taxonômico , Flores , Abelhas , Animais , Flores/fisiologia , Pólen , Ecossistema , Urbanização
9.
Sci Total Environ ; 847: 157556, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35882340

RESUMO

Global food production, food supply chains and food security are increasingly stressed by human population growth and loss of arable land, becoming more vulnerable to anthropogenic and environmental perturbations. Numerous mutualistic and antagonistic species are interconnected with the cultivation of crops and livestock and these can be challenging to identify on the large scales of food production systems. Accurate identifications to capture this diversity and rapid scalable monitoring are necessary to identify emerging threats (i.e. pests and pathogens), inform on ecosystem health (i.e. soil and pollinator diversity), and provide evidence for new management practices (i.e. fertiliser and pesticide applications). Increasingly, environmental DNA (eDNA) is providing rapid and accurate classifications for specific organisms and entire species assemblages in substrates ranging from soil to air. Here, we aim to discuss how eDNA is being used for monitoring of agricultural ecosystems, what current limitations exist, and how these could be managed to expand applications into the future. In a systematic review we identify that eDNA-based monitoring in food production systems accounts for only 4 % of all eDNA studies. We found that the majority of these eDNA studies target soil and plant substrates (60 %), predominantly to identify microbes and insects (60 %) and are biased towards Europe (42 %). While eDNA-based monitoring studies are uncommon in many of the world's food production systems, the trend is most pronounced in emerging economies often where food security is most at risk. We suggest that the biggest limitations to eDNA for agriculture are false negatives resulting from DNA degradation and assay biases, as well as incomplete databases and the interpretation of abundance data. These require in silico, in vitro, and in vivo approaches to carefully design, test and apply eDNA monitoring for reliable and accurate taxonomic identifications. We explore future opportunities for eDNA research which could further develop this useful tool for food production system monitoring in both emerging and developed economies, hopefully improving monitoring, and ultimately food security.


Assuntos
DNA Ambiental , Praguicidas , Agricultura , Biodiversidade , Código de Barras de DNA Taxonômico , Ecossistema , Monitoramento Ambiental/métodos , Fertilizantes , Humanos , Solo
10.
Sci Rep ; 12(1): 7051, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488011

RESUMO

Many lizard species use caudal autotomy, the ability to self-amputate a portion of the tail, as an effective but costly survival strategy. However, as a lizard grows, its increased size may reduce predation risk allowing for less costly strategies (e.g., biting and clawing) to be used as the primary defence. The King's skink (Egernia kingii) is a large scincid up to approximately 244 mm snout to vent length (SVL) in size when adult. Adults rely less on caudal autotomy than do juveniles due to their size and strength increase during maturation. It has been hypothesised that lower behavioural reliance on autotomy in adults is reflected in loss or restriction of caudal vertebrae fracture planes through ossification as caudal intra-vertebral fracture planes in some species ossify during ontogenetic growth. To test this, we used micro-CT to image the tails of a growth series of seven individuals of E. kingii. We show that fracture planes are not lost or restricted ontogenetically within E. kingii, with adults retaining between 39-44 autotomisable vertebrae following 5-6 non-autotomisable vertebrae. Even though mature E. kingii rely less on caudal autotomy than do juveniles, this research shows that they retain the maximum ability to autotomise their tails, providing a last resort option to avoid threats. The potential costs associated with retaining caudal autotomy are most likely mitigated through neurological control of autotomy and E. kingii's longevity.


Assuntos
Lagartos , Animais , Humanos , Comportamento Predatório
11.
Sci Rep ; 12(1): 5193, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338156

RESUMO

A central principle of threatened species management is the requirement for detailed understanding of species habitat requirements. Difficult terrain or cryptic behaviour can, however, make the study of habitat or microhabitat requirements difficult, calling for innovative data collection techniques. We used high-resolution terrestrial LiDAR imaging to develop three-dimensional models of log piles, quantifying the structural characteristics linked with occupancy of an endangered cryptic reptile, the western spiny-tailed skink (Egernia stokesii badia). Inhabited log piles were generally taller with smaller entrance hollows and a wider main log, had more high-hanging branches, fewer low-hanging branches, more mid- and understorey cover, and lower maximum canopy height. Significant characteristics linked with occupancy were longer log piles, an average of three logs, less canopy cover, and the presence of overhanging vegetation, likely relating to colony segregation, thermoregulatory requirements, and foraging opportunities. In addition to optimising translocation site selection, understanding microhabitat specificity of E. s. badia will help inform a range of management objectives, such as targeted monitoring and invasive predator control. There are also diverse opportunities for the application of this technology to a wide variety of future ecological studies and wildlife management initiatives pertaining to a range of cryptic, understudied taxa.


Assuntos
Lagartos , Animais , Ecossistema , Espécies em Perigo de Extinção , Árvores
12.
Conserv Biol ; 36(1): e13667, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33210780

RESUMO

Mitigation translocation is a subgroup of conservation translocation, categorized by a crisis-responsive time frame and the immediate goal of relocating individuals threatened with death. However, the relative successes of conservation translocations with longer time frames and broader metapopulation- and ecosystem-level considerations have been used to justify the continued implementation of mitigation translocations without adequate post hoc monitoring to confirm their effectiveness as a conservation tool. Mitigation translocations now outnumber other conservation translocations, and understanding the effectiveness of mitigation translocations is critical given limited global conservation funding especially if the mitigation translocations undermine biodiversity conservation by failing to save individuals. We assessed the effectiveness of mitigation translocations by conducting a quantitative review of the global literature. A total of 59 mitigation translocations were reviewed for their adherence to the adaptive scientific approach expected of other conservation translocations and for the testing of management options to continue improving techniques for the future. We found that mitigation translocations have not achieved their potential as an effective applied science. Most translocations focused predominantly on population establishment- and persistence-level questions, as is often seen in translocations more broadly, and less on metapopulation and ecosystem outcomes. Questions regarding the long-term impacts to the recipient ecosystem (12% of articles) and the carrying capacity of translocation sites (24% of articles) were addressed least often, despite these factors being more likely to influence ultimate success. Less than half (47%) of studies included comparison of different management techniques to facilitate practitioners selecting the most effective management actions for the future. To align mitigation translocations with the relative success of other conservation translocations, it is critical that future mitigation translocations conform to an established experimental approach to improve their effectiveness. Effective mitigation translocations will require significantly greater investment of time, expertise, and resources in the future.


La Translocación para Mitigación como una Herramienta de Gestión Resumen La translocación para mitigación es un subgrupo de la translocación para la conservación, caracterizada por un marco de tiempo que responda a la crisis y la meta inmediata de reubicar a individuos amenazados de muerte. Sin embargo, el éxito relativo de las traslocaciones para conservación con marcos de tiempo mayores y consideraciones a nivel metapoblación y ecosistema más amplias han sido utilizadas para justificar la implementación de translocaciones para mitigación sin monitoreo post hoc adecuado para confirmar su efectividad como herramienta de conservación. Las translocaciones para mitigación ahora son más numerosas que otras translocaciones, por lo que es fundamental entender la efectividad de las translocaciones para mitigación debido a las limitaciones en el financiamiento para la conservación global - especialmente si las translocaciones para mitigación socavan la conservación de la biodiversidad al fallar en salvar individuos. Evaluamos la efectividad de translocaciones para mitigación mediante una revisión cuantitativa de la literatura global. Revisamos un total de 59 translocaciones para mitigación para analizar su adhesión al método científico adaptativo esperado de otras translocaciones de conservación y para probar las opciones de gestión para mejorar las técnicas en el futuro. Encontramos que las mitigaciones para translocación no han alcanzado su potencial como una ciencia aplicada efectiva. La mayoría de las translocaciones se centraron predominantemente en preguntas relacionadas con el establecimiento y nivel de persistencia de la población, como se observa en translocaciones más generales, y menos en resultados a nivel metapoblación y ecosistema. Aspectos relacionados con los impactos a largo plazo sobre el ecosistema recipiente (12% de los artículos) y la capacidad de carga de los sitios de translocación (24% de los artículos) fueron poco abordados, no obstante que es más probable que estos factores influyan en el éxito final. Menos de la mitad (47%) de los estudios incluyó la comparación de métodos de gestión diferentes para facilitar que los practicantes selecciones las acciones de gestión más efectivas para el futuro. Para alinear las translocaciones para mitigación con el éxito relativo de otras translocaciones para conservación, es crítico que las futuras translocaciones para mitigación se apeguen a un método experimental establecido para incrementar su efectividad. Para ser efectivas, las translocaciones para mitigación requerirán una inversión de tiempo, conocimientos técnicos y recursos significativamente mayores.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Conservação dos Recursos Naturais/métodos , Humanos , Motivação
13.
Environ Pollut ; 295: 118674, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34906591

RESUMO

Urban ecosystems and remnant habitat 'islands' therein, provide important strongholds for many wildlife species including those of conservation significance. However, the persistence of these habitats can be undermined if their structure and function are too severely disrupted. Urban wetlands, specifically, are usually degraded by a monoculture of invasive vegetation, disrupted hydrology, and chronic-contamination from a suite of anthropogenic pollutants. Top predators-as bioindicators-can be used to assess and monitor the health of these ecosystems. We measured eight health parameters (e.g., parasites, wounds and scars, tail loss and body condition) in a wetland top predator, the western tiger snake, Notechis scutatus occidentalis. For three years, snakes were sampled across four wetlands along an urban gradient. For each site, we used GIS software to measure the area of different landscapes and calculate an urbanisation-landscape score. Previously published research on snake contamination informed our calculations of a metal-pollution index for each site. We used generalised linear mixed models to assess the relationship between all health parameters and site variables. We found the metal-pollution index to have the most significant association with poor body condition. Although parasitism, tail loss and wounds differed among sites, none of these parameters influenced body condition. Additionally, the suite of health parameters suggested differing health status among sites; however, our measure of contemporary landscape urbanisation was never a significant predictor variable. Our results suggest that the health of wetland predators surrounding a rapidly growing city may be offset by higher levels of environmental pollution.


Assuntos
Parasitos , Áreas Alagadas , Animais , Ecossistema , Biomarcadores Ambientais , Monitoramento Ambiental , Poluição Ambiental , Serpentes , Urbanização
14.
J Dev Biol ; 9(4)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34940500

RESUMO

Caudal autotomy, the ability to shed a portion of the tail, is a widespread defence strategy among lizards. Following caudal autotomy, and during regeneration, lizards face both short- and long-term costs associated with the physical loss of the tail and the energy required for regeneration. As such, the speed at which the individual regenerates its tail (regeneration rate) should reflect the fitness priorities of the individual. However, multiple factors influence the regeneration rate in lizards, making inter-specific comparisons difficult and hindering broader scale investigations. We review regeneration rates for lizards and tuatara from the published literature, discuss how species' fitness priorities and regeneration rates are influenced by specific, life history and environmental factors, and provide recommendations for future research. Regeneration rates varied extensively (0-4.3 mm/day) across the 56 species from 14 family groups. Species-specific factors, influencing regeneration rates, varied based on the type of fracture plane, age, sex, reproductive season, and longevity. Environmental factors including temperature, photoperiod, nutrition, and stress also affected regeneration rates, as did the method of autotomy induction, and the position of the tail also influenced regeneration rates for lizards. Additionally, regeneration could alter an individual's behaviour, growth, and reproductive output, but this varied depending on the species.

15.
PLoS One ; 16(10): e0259124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34714831

RESUMO

Urbanisation alters landscapes, introduces wildlife to novel stressors, and fragments habitats into remnant 'islands'. Within these islands, isolated wildlife populations can experience genetic drift and subsequently suffer from inbreeding depression and reduced adaptive potential. The Western tiger snake (Notechis scutatus occidentalis) is a predator of wetlands in the Swan Coastal Plain, a unique bioregion that has suffered substantial degradation through the development of the city of Perth, Western Australia. Within the urban matrix, tiger snakes now only persist in a handful of wetlands where they are known to bioaccumulate a suite of contaminants, and have recently been suggested as a relevant bioindicator of ecosystem health. Here, we used genome-wide single nucleotide polymorphism (SNP) data to explore the contemporary population genomics of seven tiger snake populations across the urban matrix. Specifically, we used population genomic structure and diversity, effective population sizes (Ne), and heterozygosity-fitness correlations to assess fitness of each population with respect to urbanisation. We found that population genomic structure was strongest across the northern and southern sides of a major river system, with the northern cluster of populations exhibiting lower heterozygosities than the southern cluster, likely due to a lack of historical gene flow. We also observed an increasing signal of inbreeding and genetic drift with increasing geographic isolation due to urbanisation. Effective population sizes (Ne) at most sites were small (< 100), with Ne appearing to reflect the area of available habitat rather than the degree of adjacent urbanisation. This suggests that ecosystem management and restoration may be the best method to buffer the further loss of genetic diversity in urban wetlands. If tiger snake populations continue to decline in urban areas, our results provide a baseline measure of genomic diversity, as well as highlighting which 'islands' of habitat are most in need of management and protection.


Assuntos
Conservação dos Recursos Naturais/métodos , Elapidae/genética , Biomarcadores Ambientais , Animais , Deriva Genética , Variação Genética , Genética Populacional , Austrália Ocidental , Áreas Alagadas
16.
J Wildl Dis ; 57(2): 253-263, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33822160

RESUMO

Urban wildlife often suffer poorer health than their counterparts living in more pristine environments due to exposure to anthropogenic stressors such as habitat degradation and environmental contamination. As a result, the health of urban versus nonurban snakes might be assessed by differences in their plasma biochemistries. We compared the plasma profiles of western tiger snakes (Notechis scutatus occidentalis) from a heavily urbanized wetland and a natural, nonurbanized wetland. Despite the urbanized snakes having lower body mass index, we found no significant difference between the plasma profiles of the two populations. We collected snakes from each population and kept them in captivity for 6 mo, providing them with stable conditions, uncontaminated (exempt from heavy metals and pesticides) food and water, and lowered parasite intensity in an attempt to promote better health through depuration. After captivity, snakes experienced a significant improvement in body mass index and significant changes in their plasma profiles. Snakes from the natural wetland initially had more variation of DNA damage; mean concentration of DNA damage in all snakes slightly decreased, but not significantly, after captivity. We present the plasma biochemistry profiles from western tiger snakes both before and after captivity and suggest a period of removal from natural stressors via captivity may offer a more reliable result of how plasma profiles of healthy animals might appear.


Assuntos
Criação de Animais Domésticos , Elapidae/sangue , Áreas Alagadas , Animais , Anti-Helmínticos/uso terapêutico , Peso Corporal , Dano ao DNA , Elapidae/parasitologia , Fenbendazol/uso terapêutico , Proteínas de Choque Térmico HSP70/sangue , Proteínas de Choque Térmico HSP70/metabolismo , Helmintíase Animal/tratamento farmacológico , Metais Pesados , Estresse Oxidativo/efeitos dos fármacos , Praguicidas
17.
Biol Rev Camb Philos Soc ; 95(5): 1479-1496, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32583608

RESUMO

Abnormal caudal regeneration, the production of additional tails through regeneration events, occurs in lepidosaurs as a result of incomplete autotomy or sufficient caudal wound. Despite being widely known to occur, documented events generally are limited to opportunistic single observations - hindering the understanding of the ecological importance of caudal regeneration. Here we compiled and reviewed a robust global database of both peer-reviewed and non-peer reviewed records of abnormal regeneration events in lepidosaurs published over the last 400 years. Using this database, we qualitatively and quantitatively assessed the occurrence and characteristics of abnormal tail regeneration among individuals, among species, and among populations. We identified 425 observations from 366 records pertaining to 175 species of lepidosaurs across 22 families from 63 different countries. At an individual level, regenerations ranged from bifurcations to hexafurcations; from normal regeneration from the original tail to multiple regenerations arising from a single point; and from growth from the distal third to the proximal third of the tail. Species showing abnormal regenerations included those with intra-vertebral, inter-vertebral or no autotomy planes, indicating that abnormal regenerations evidently occur across lepidosaurs regardless of whether the species demonstrates caudal autotomy or not. Within populations, abnormal regenerations were estimated at a mean ± SD of 2.75 ± 3.41% (range 0.1-16.7%). There is a significant lack of experimental studies to understand the potential ecological impacts of regeneration on the fitness and life history of individuals and populations. We hypothesised that abnormal regeneration may affect lepidosaurs via influencing kinematics of locomotion, restrictions in escape mechanisms, anti-predation tactics, and intra- and inter-specific signalling. Behaviourally testing these hypotheses would be an important future research direction.


Assuntos
Lagartos , Animais , Fenômenos Biomecânicos , Humanos , Locomoção , Comportamento Predatório
18.
Evolution ; 74(5): 897-910, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32267543

RESUMO

Sacrificing body parts is one of many behaviors that animals use to escape predation. This trait, termed autotomy, is classically associated with lizards. However, several other taxa also autotomize, and this trait has independently evolved multiple times throughout Animalia. Despite having multiple origins and being an iconic antipredatory trait, much remains unknown about the evolution of autotomy. Here, we combine morphological, behavioral, and genomic data to investigate the evolution of autotomy within leaf-footed bugs and allies (Insecta: Hemiptera: Coreidae + Alydidae). We found that the ancestor of leaf-footed bugs autotomized and did so slowly; rapid autotomy (<2 min) then arose multiple times. The ancestor likely used slow autotomy to reduce the cost of injury or to escape nonpredatory entrapment but could not use autotomy to escape predation. This result suggests that autotomy to escape predation is a co-opted benefit (i.e., exaptation), revealing one way that sacrificing a limb to escape predation may arise. In addition to identifying the origins of rapid autotomy, we also show that across species variation in the rates of autotomy can be explained by body size, distance from the equator, and enlargement of the autotomizable appendage.


Assuntos
Comportamento Animal , Evolução Biológica , Heterópteros/fisiologia , Animais , Extremidades/fisiologia , Heterópteros/anatomia & histologia , Heterópteros/genética , Comportamento Predatório
19.
Sci Rep ; 9(1): 18717, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822746

RESUMO

Many species of lizard use caudal autotomy, the ability to self-amputate a portion of their tail, regenerated over time, as an effective anti-predation mechanism. The importance of this tactic for survival depends on the degree of predation risk. There are, however, negative trade-offs to losing a tail, such as loss of further autotomy opportunities with the regenerated tail vertebrae being replaced by a continuous cartilaginous rod. The common consensus has been that once a tail has been autotomised and regenerated it can only be autotomised proximal to the last vertebral autotomy point, as the cartilage rod lacks autotomy planes. However, anecdotal evidence suggests that although the regenerated portion of the tail is unable to autotomise, it can re-regenerate following a physical shearing event. We assessed re-regeneration in three populations of the King's skink (Egernia kingii), a large lizard endemic to south-west Western Australia and surrounding islands. We show that re-regeneration is present at an average of 17.2% across the three populations, and re-regenerated tissue can comprise up to 23.3% of an individual's total tail length. The ability to re-regenerate may minimise the costs to an individual's fitness associated with tail loss, efficiently restoring ecological functions of the tail.


Assuntos
Lagartos/fisiologia , Regeneração/fisiologia , Cauda/fisiologia , Animais , Cartilagem , Comportamento Predatório , Austrália Ocidental
20.
Biol Rev Camb Philos Soc ; 94(6): 1881-1896, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31240822

RESUMO

Autotomy, the self-induced loss of a body part, occurs throughout Animalia. A lizard dropping its tail to escape predation is an iconic example, however, autotomy occurs in a diversity of other organisms. Octopuses can release their arms, crabs can drop their claws, and bugs can amputate their legs. The diversity of organisms that can autotomize body parts has led to a wealth of research and several taxonomically focused reviews. These reviews have played a crucial role in advancing our understanding of autotomy within their respective groups. However, because of their taxonomic focus, these reviews are constrained in their ability to enhance our understanding of autotomy. Here, we aim to synthesize research on the ecology and evolution of autotomy throughout Animalia, building a unified framework on which future studies can expand. We found that the ability to drop an appendage has evolved multiple times throughout Animalia and that once autotomy has evolved, selection appears to act on the removable appendage to increase the efficacy and/or efficiency of autotomy. This could explain why some autotomizable body parts are so elaborate (e.g. brightly coloured). We also show that there are multiple benefits, and variable costs, associated with autotomy. Given this variation, we generate an economic theory of autotomy (modified from the economic theory of escape) which makes predictions about when an individual should resort to autotomy. Finally, we show that the loss of an autotomizable appendage can have numerous consequences on population and community dynamics. By taking this broad taxonomic approach, we identified patterns of autotomy that transcend specific lineages and highlight clear directions for future research.


Assuntos
Comportamento Animal/fisiologia , Evolução Biológica , Extremidades/fisiologia , Regeneração/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...