Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Proced Online ; 25(1): 4, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36814189

RESUMO

BACKGROUND: Intraneuronal tau aggregation is the major pathological hallmark of neurodegenerative tauopathies. It is now generally acknowledged that tau aggregation also affects astrocytes in a cell non-autonomous manner. However, mechanisms involved are unclear, partly because of the lack of models that reflect the situation in the human tauopathy brain. To accurately model neuron-astrocyte interaction in tauopathies, there is a need for a model that contains both human neurons and human astrocytes, intraneuronal tau pathology and mimics the three-dimensional architecture of the brain. RESULTS: Here we established a novel 100-200 µm thick 3D human neuron/astrocyte co-culture model of tau pathology, comprising homogenous populations of hiPSC-derived neurons and primary human astrocytes in microwell format. Using confocal, electron and live microscopy, we validate the procedures by showing that neurons in the 3D co-culture form pre- and postsynapses and display spontaneous calcium transients within 4 weeks. Astrocytes in the 3D co-culture display bipolar and stellate morphologies with extensive processes that ensheath neuronal somas, spatially align with axons and dendrites and can be found perisynaptically. The complex morphology of astrocytes and the interaction with neurons in the 3D co-culture mirrors that in the human brain, indicating the model's potential to study physiological and pathological neuron-astrocyte interaction in vitro. Finally, we successfully implemented a methodology to introduce seed-independent intraneuronal tau aggregation in the 3D co-culture, enabling study of neuron-astrocyte interaction in early tau pathogenesis. CONCLUSIONS: Altogether, these data provide proof-of-concept for the utility of this rapid, miniaturized, and standardized 3D model for cell type-specific manipulations, such as the intraneuronal pathology that is associated with neurodegenerative disorders.

2.
J Mol Cell Biol ; 14(10)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36520068

RESUMO

Progressive aggregation of tau protein in neurons is associated with neurodegeneration in tauopathies. Cell non-autonomous disease mechanisms in astrocytes may be important drivers of the disease process but remain largely elusive. Here, we studied cell type-specific responses to intraneuronal tau aggregation prior to neurodegeneration. To this end, we developed a fully human co-culture model of seed-independent intraneuronal tau pathology, which shows no neuron and synapse loss. Using high-content microscopy, we show that intraneuronal tau aggregation induces oxidative stress accompanied by activation of the integrated stress response specifically in astrocytes. This requires the direct co-culture with neurons and is not related to neurodegeneration or extracellular tau levels. Tau-directed antisense therapy reduced intraneuronal tau levels and aggregation and prevented the cell non-autonomous responses in astrocytes. These data identify the astrocytic integrated stress response as a novel disease mechanism activated by intraneuronal tau aggregation. In addition, our data provide the first evidence for the efficacy of tau-directed antisense therapy to target cell autonomous and cell non-autonomous disease pathways in a fully human model of tau pathology.


Assuntos
Tauopatias , Proteínas tau , Humanos , Proteínas tau/metabolismo , Astrócitos/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Neurônios/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1863(3): 793-800, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28040507

RESUMO

Most neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease are hallmarked by aggregate formation of disease-related proteins. In various of these diseases transfer of aggregation-prone proteins between neurons and between neurons and glial cells has been shown, thereby initiating aggregation in neighboring cells and so propagating the disease phenotype. Whereas this prion-like transfer is well studied in Alzheimer's and Parkinson's disease, only a few studies have addressed this potential mechanism in Huntington's disease. Here, we present an overview of in vitro and in vivo methodologies to study release, intercellular transfer and uptake of aggregation-prone protein fragments in Huntington's disease models.


Assuntos
Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Príons/metabolismo , Agregação Patológica de Proteínas/metabolismo , Animais , Humanos , Proteína Huntingtina/análise , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Mutação , Neuroglia/patologia , Neurônios/patologia , Príons/análise , Príons/genética , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...