Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 809962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087838

RESUMO

The Wilms tumor suppressor gene Wt1 encodes a zinc finger transcription factor, which is highly conserved among vertebrates. It is a key regulator of urogenital development and homeostasis but also plays a role in other organs including the spleen and the heart. More recently additional functions for Wt1 in the mammalian central nervous system have been described. In contrast to mammals, bony fish possess two paralogous Wt1 genes, namely wt1a and wt1b. By performing detailed in situ hybridization analyses during zebrafish development, we discovered new expression domains for wt1a in the dorsal hindbrain, the caudal medulla and the spinal cord. Marker analysis identified wt1a expressing cells of the dorsal hindbrain as ependymal cells of the choroid plexus in the myelencephalic ventricle. The choroid plexus acts as a blood-cerebrospinal fluid barrier and thus is crucial for brain homeostasis. By employing wt1a mutant larvae and a dye accumulation assay with fluorescent tracers we demonstrate that Wt1a is required for proper choroid plexus formation and function. Thus, Wt1a contributes to the barrier properties of the choroid plexus in zebrafish, revealing an unexpected role for Wt1 in the zebrafish brain.

2.
Methods Mol Biol ; 1467: 119-28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27417964

RESUMO

The Wilms' tumor suppressor gene Wt1 is highly conserved among vertebrates. In contrast to mammals, most fish species possess two wt1 paralogs that have been named wt1a and wt1b. Concerning wt1 in fish, most work so far has been done using zebrafish, focusing on the embryonic kidney, the pronephros. In this chapter we will describe the structure and development of the pronephros as well as the role that the wt1 genes play in the embryonic zebrafish kidney. We also discuss Wt1 target genes and describe the potential function of the Wt1 proteins in the adult kidney. Finally we will summarize data on the role of Wt1 outside of the kidney.


Assuntos
Proteínas WT1/genética , Proteínas WT1/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/crescimento & desenvolvimento , Rim/crescimento & desenvolvimento , Rim/metabolismo , Miocárdio/metabolismo , Pronefro/crescimento & desenvolvimento , Pronefro/metabolismo , Peixe-Zebra/metabolismo
3.
Methods Mol Biol ; 1467: 133-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27417966

RESUMO

Zebrafish is becoming a very important model for studying human diseases. The conserved structure of the nephrons in the kidney allows the user to answer questions relating to study human kidney disorders. Wt1a-expressing podocytes are the most important cells within the glomeruli of adult zebrafish. In order to understand the molecular characteristics of these cells, within damage models, we have established a method for isolating them.


Assuntos
Separação Celular/métodos , Citometria de Fluxo/métodos , Podócitos/citologia , Animais , Podócitos/metabolismo , Proteínas WT1/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
4.
Development ; 140(20): 4177-81, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24026124

RESUMO

One of the earliest steps in embryonic development is the specification of the germ layers, the subdivision of the blastula embryo into endoderm, mesoderm and ectoderm. Maternally expressed members of the Transforming Growth Factor ß (TGFß) family influence all three germ layers; the ligands are required to induce endoderm and mesoderm, whereas inhibitors are required for formation of the ectoderm. Here, we demonstrate a vital role for maternal Coco, a secreted antagonist of TGFß signalling, in this process. We show that Coco is required to prevent Activin and Nodal signals in the dorsal marginal side of the embryo from invading the prospective ectoderm, thereby restricting endoderm- and mesoderm-inducing signals to the vegetal and marginal zones of the pre-gastrula Xenopus laevis embryo.


Assuntos
Embrião não Mamífero/metabolismo , Camadas Germinativas/embriologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Ativinas/metabolismo , Animais , Blástula/metabolismo , Comunicação Celular , Ectoderma/metabolismo , Embrião não Mamífero/fisiologia , Endoderma/metabolismo , Mesoderma/metabolismo , Proteína Nodal/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/antagonistas & inibidores , Xenopus laevis/metabolismo
5.
Stem Cells ; 28(11): 1950-60, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20872847

RESUMO

Neural induction is the first step in the formation of the vertebrate central nervous system. The emerging consensus of the mechanisms underlying neural induction is the combined influences from inhibiting bone morphogenetic protein (BMP) signaling and activating fibroblast growth factor (FGF)/Erk signaling, which act extrinsically via either autocrine or paracrine fashions. However, do intrinsic forces (cues) exist and do they play decisive roles in neural induction? These questions remain to be answered. Here, we have identified a novel neural initiator, neuronatin (Nnat), which acts as an intrinsic factor to promote neural fate in mammals and Xenopus. ESCs lacking this intrinsic factor fail to undergo neural induction despite the inhibition of the BMP pathway. We show that Nnat initiates neural induction in ESCs through increasing intracellular Ca(2+) ([Ca(2+) ](i)) by antagonizing Ca(2+) -ATPase isoform 2 (sarco/endoplasmic reticulum Ca(2+) -ATPase isoform 2) in the endoplasmic reticulum, which in turn increases the phosphorylation of Erk1/2 and inhibits the BMP4 pathway and leads to neural induction in conjunction with FGF/Erk pathway.


Assuntos
Sinalização do Cálcio/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Western Blotting , Sinalização do Cálcio/genética , Diferenciação Celular/genética , Citometria de Fluxo , Imuno-Histoquímica , Imunoprecipitação , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...