Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(2): 313-321, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622098

RESUMO

AgeMeta is a database that provides systemic and quantitative description of mammalian aging at the level of gene expression. It encompasses transcriptomic changes with age across various tissues of humans, mice, and rats, based on a comprehensive meta-analysis of 122 publicly available gene expression datasets from 26 studies. AgeMeta provides an intuitive visual interface for quantification of aging-associated transcriptomics at the level of individual genes and functional groups of genes, allowing easy comparison among various species and tissues. Additionally, all the data in the database can be downloaded and analyzed independently. Overall, this work contributes to the understanding of the complex network of biological processes underlying mammalian aging and supports future advancements in this field. AgeMeta is freely available at: https://age-meta.com/.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Ratos , Camundongos , Humanos , Animais , Envelhecimento/genética , Bases de Dados Factuais , Mamíferos/genética
2.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674068

RESUMO

Lifespan is a complex quantitative trait involving genetic and non-genetic factors as well as the peculiarities of ontogenesis. As with all quantitative traits, lifespan shows considerable variation within populations and between individuals. Drosophila, a favourite object of geneticists, has greatly advanced our understanding of how different forms of variability affect lifespan. This review considers the role of heritable genetic variability, phenotypic plasticity and stochastic variability in controlling lifespan in Drosophila melanogaster. We discuss the major historical milestones in the development of the genetic approach to study lifespan, the breeding of long-lived lines, advances in lifespan QTL mapping, the environmental factors that have the greatest influence on lifespan in laboratory maintained flies, and the mechanisms, by which individual development affects longevity. The interplay between approaches to study ageing and lifespan limitation will also be discussed. Particular attention will be paid to the interaction of different types of variability in the control of lifespan.


Assuntos
Drosophila melanogaster , Longevidade , Animais , Longevidade/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Locos de Características Quantitativas , Processos Estocásticos , Variação Genética , Interação Gene-Ambiente , Envelhecimento/genética , Envelhecimento/fisiologia , Meio Ambiente , Fenótipo
3.
Nucleic Acids Res ; 52(D1): D950-D962, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37665017

RESUMO

The Open Genes database was created to enhance and simplify the search for potential aging therapy targets. We collected data on 2402 genes associated with aging and developed convenient tools for searching and comparing gene features. A comprehensive description of genes has been provided, including lifespan-extending interventions, age-related changes, longevity associations, gene evolution, associations with diseases and hallmarks of aging, and functions of gene products. For each experiment, we presented the necessary structured data for evaluating the experiment's quality and interpreting the study's findings. Our goal was to stay objective and precise while connecting a particular gene to human aging. We distinguished six types of studies and 12 criteria for adding genes to our database. Genes were classified according to the confidence level of the link between the gene and aging. All the data collected in a database are provided both by an API and a user interface. The database is publicly available on a website at https://open-genes.org/.


Assuntos
Envelhecimento , Bases de Dados Genéticas , Longevidade , Humanos , Envelhecimento/genética , Longevidade/genética , RNA
4.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232546

RESUMO

The spatio-temporal regulation of gene expression determines the fate and function of various cells and tissues and, as a consequence, the correct development and functioning of complex organisms. Certain mechanisms of gene activity regulation provide adequate cell responses to changes in environmental factors. Aside from gene expression disorders that lead to various pathologies, alterations of expression of particular genes were shown to significantly decrease or increase the lifespan in a wide range of organisms from yeast to human. Drosophila fruit fly is an ideal model system to explore mechanisms of longevity and aging due to low cost, easy handling and maintenance, large number of progeny per adult, short life cycle and lifespan, relatively low number of paralogous genes, high evolutionary conservation of epigenetic mechanisms and signalling pathways, and availability of a wide range of tools to modulate gene expression in vivo. Here, we focus on the organization of the evolutionarily conserved signaling pathways whose components significantly influence the aging process and on the interconnections of these pathways with gene expression regulation.


Assuntos
Proteínas de Drosophila , Longevidade , Envelhecimento/genética , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Humanos , Insulina/metabolismo , Longevidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...