Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(3): e0119871, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789746

RESUMO

Mo-CBP3 is a chitin-binding protein from M. oleifera seeds that inhibits the germination and mycelial growth of phytopathogenic fungi. This protein is highly thermostable and resistant to pH changes, and therefore may be useful in the development of new antifungal drugs. However, the relationship of MoCBP3 with the known families of carbohydrate-binding domains has not been established. In the present study, full-length cDNAs encoding 4 isoforms of Mo-CBP3 (Mo-CBP3-1, Mo-CBP3-2, Mo-CBP3-3 and Mo-CBP3-4) were cloned from developing seeds. The polypeptides encoded by the Mo-CBP3 cDNAs were predicted to contain 160 (Mo-CBP3-3) and 163 amino acid residues (Mo-CBP3-1, Mo-CBP3-2 and Mo-CBP3-4) with a signal peptide of 20-residues at the N-terminal region. A comparative analysis of the deduced amino acid sequences revealed that Mo-CBP3 is a typical member of the 2S albumin family, as shown by the presence of an eight-cysteine motif, which is a characteristic feature of the prolamin superfamily. Furthermore, mass spectrometry analysis demonstrated that Mo-CBP3 is a mixture of isoforms that correspond to different mRNA products. The identification of Mo-CBP3 as a genuine member of the 2S albumin family reinforces the hypothesis that these seed storage proteins are involved in plant defense. Moreover, the chitin-binding ability of Mo-CBP3 reveals a novel functionality for a typical 2S albumin.


Assuntos
Albuminas 2S de Plantas/genética , Proteínas de Transporte/genética , Quitinases/genética , Moringa oleifera/genética , Proteínas de Plantas/genética , Albuminas 2S de Plantas/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Quitina/genética , Quitina/metabolismo , Quitinases/classificação , Sementes/química , Sementes/genética
2.
PLoS One ; 9(10): e111427, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25347074

RESUMO

Mo-CBP3 is a chitin-binding protein purified from Moringa oleifera Lam. seeds that displays inhibitory activity against phytopathogenic fungi. This study investigated the structural properties and the antifungal mode of action of this protein. To this end, circular dichroism spectroscopy, antifungal assays, measurements of the production of reactive oxygen species and microscopic analyses were utilized. Mo-CBP3 is composed of 30.3% α-helices, 16.3% ß-sheets, 22.3% turns and 30.4% unordered forms. The Mo-CBP3 structure is highly stable and retains its antifungal activity regardless of temperature and pH. Fusarium solani was used as a model organism for studying the mechanisms by which this protein acts as an antifungal agent. Mo-CBP3 significantly inhibited spore germination and mycelial growth at 0.05 mg.mL-1. Mo-CBP3 has both fungistatic and fungicidal effects, depending on the concentration used. Binding of Mo-CBP3 to the fungal cell surface is achieved, at least in part, via electrostatic interactions, as salt was able to reduce its inhibitory effect. Mo-CBP3 induced the production of ROS and caused disorganization of both the cytoplasm and the plasma membrane in F. solani cells. Based on its high stability and specific toxicity, with broad-spectrum efficacy against important phytopathogenic fungi at low inhibitory concentrations but not to human cells, Mo-CBP3 has great potential for the development of new antifungal drugs or transgenic crops with enhanced resistance to phytopathogens.


Assuntos
Antifúngicos/química , Quitina/metabolismo , Moringa oleifera/química , Proteínas de Plantas/química , Antifúngicos/farmacologia , Colletotrichum/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Ligação Proteica , Estabilidade Proteica , Sementes/química , Esporos Fúngicos/efeitos dos fármacos
3.
Biopolymers ; 98(4): 406-15, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23193603

RESUMO

A thermostable chitin-binding protein (14.3 kDa) with antifungal activity was isolated from Moringa oleifera seeds by affinity chromatography on chitin followed by ion exchange chromatography. NH(2-) CPAIQRCCQQLRNIQPPCRCCQ (Mo-CBP3) is a glycoprotein with 2.5% sugar, pI 10.8, without hemagglutination, chitinase or beta-glucanase activities. Mo-CBP3 possesses in vitro antifungal activity against the phytopathogenicfungi Fusarium solani, F. oxysporum, Colletotrichum musae and C. gloesporioides. Contrarily, Mo-CBP3 did not affect Pythium oligandrum, an oomycete. At 0.05 mg/ml, Mo-CBP3 showed to be fungistatic against F. solani, but at 0.1 mg/ml Mo-CBP3 behaved as a potent fungicidal agent as it inhibited both the spore germination and mycelial growth of F. solani. Surprisingly, the effect of Mo-CBP3 against spore germination was observed even when the protein was heated at 100 degrees C for 1 h or pretreated with 0.15M N-acetyl-D-glucosamine. Mo-CBP3 inhibited the glucose-stimulated acidification of the incubation medium by F. solani. This is apparently caused by structural plasma membrane disarrangement induced by Mo-CBP3. Altogether, these results suggest that Mo-CBP3 might be involved in plant defense mechanisms and could be used as potential antifungal agent for controlling fungal pathogens in plants.


Assuntos
Moringa oleifera/química , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Sementes/química , Antifúngicos/química , Antifúngicos/farmacologia , Quitina , Fusarium/efeitos dos fármacos , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...