Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nitric Oxide ; 132: 15-26, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736618

RESUMO

Spatial confinement and temporal regulation of signaling by nitric oxide (NO) and reactive oxygen species (ROS) occurs in cancer cells. Signaling mediated by NO and ROS was investigated in two sub clones of the murine melanoma B16F10-Nex2 cell line, Nex10C and Nex8H treated or not with bradykinin (BK). The sub clone Nex10C, similar to primary site cells, has a low capacity for colonizing the lungs, whereas the sub clone Nex8H, similar to metastatic cells, corresponds to a highly invasive melanoma. BK-treated Nex10C cells exhibited a transient increase in NO and an inhibition in basal O2- levels. Inhibition of endogenous NO production by l-NAME resulted in detectable levels of O2-. l-NAME promoted Rac1 activation and enhanced Rac1-PI3K association. l-NAME in the absence of BK resulted in Nex10C cell migration and invasion, suggesting that NO is a negative regulator of O2- mediated cell migration and cell invasion. BK-treated Nex8H cells sustained endogenous NO production through the activation of NOS3. NO activated Rac1 and promoted Rac1-PI3K association. NO stimulated cell migration and cell invasion through a signaling axis involving Ras, Rac1 and PI3K. In conclusion, a role for O2- and NO as positive regulators of Rac1-PI3K signaling associated with cell migration and cell invasion is proposed respectively for Nex10C and Nex8H murine melanoma cells.


Assuntos
Bradicinina , Melanoma , Camundongos , Animais , Bradicinina/farmacologia , Bradicinina/metabolismo , Superóxidos , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Movimento Celular
2.
Cell Biol Int ; 46(1): 158-169, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34719858

RESUMO

Low levels of nitric oxide (NO) produced by constitutively expressed inducible NO synthase (NOS2) in tumor cells may be an important factor in their development. NOS2 expression is associated with high mortality rates for various cancers. Alternative splicing of NOS2 down-regulates its enzymatic activity, resulting in decreased intracellular NO concentrations. Specific probes to detect alternative splicing of NOS2 were used in two isogenic human colon cancer cell lines derived either from the primary tumor (SW480) or from a lymph node metastasis (SW620). Splicing variant of NOS2 S3, lacking exons 9, 10, and 11, was overexpressed in SW480 cells. NOS2 S3 was silenced in SW480 cells. Flow-cytometry analysis was used to estimate the intracellular NO levels and to analyze the cell cycle of the studied cell lines. Western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine apoptosis and autophagy markers. SW480 and SW620 cells expressed NOS2 S3. Overexpression of the NOS2 S3 in SW480 cells downregulated intracellular NO levels. SW480 cells with knocked down NOS2 S3 (referred to as S3C9 cells) had higher intracellular levels of NO compared to the wild-type SW480 cells under serum restriction. Higher NO levels resulted in the loss of viability of S3C9 cells, which was associated with autophagy. Induction of autophagy by elevated intracellular NO levels in S3C9 cells under serum restriction, suggests that autophagy operates as a cytotoxic response to nitrosative stress. The expression of NOS2 S3 plays an important role in regulating intracellular NO production and maintaining viability in SW480 cells under serum restriction. These findings may prove significant in the design of NOS2/NO-based therapies for colon cancer.


Assuntos
Adenocarcinoma/enzimologia , Autofagia , Neoplasias do Colo/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Estresse Nitrosativo , Adenocarcinoma/genética , Adenocarcinoma/secundário , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Óxido Nítrico Sintase Tipo II/genética , Isoformas de Proteínas , Transdução de Sinais
3.
Front Microbiol ; 11: 1184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582109

RESUMO

The fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii are the causative agents of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. This fungus is considered a facultative intracellular pathogen that is able to survive and replicate inside macrophages. The survival of the fungus during infection depends on its adaptability to various conditions, such as nitrosative/oxidative stress produced by the host immune cells, particularly alveolar macrophages. Currently, there is little knowledge about the Paracoccidioides spp. signaling pathways involved in the fungus evasion mechanism of the host defense response. However, it is known that some of these pathways are triggered by reactive oxygen species and reactive nitrogen species (ROS/RNS) produced by host cells. Considering that the effects of NO (nitric oxide) on pathogens are concentration dependent, such effects could alter the redox state of cysteine residues by influencing (activating or inhibiting) a variety of protein functions, notably S-nitrosylation, a highly important NO-dependent posttranslational modification that regulates cellular functions and signaling pathways. It has been demonstrated by our group that P. brasiliensis yeast cells proliferate when exposed to low NO concentrations. Thus, this work investigated the modulation profile of S-nitrosylated proteins of P. brasiliensis, as well as identifying S-nitrosylation sites after treatment with RNS. Through mass spectrometry analysis (LC-MS/MS) and label-free quantification, it was possible to identify 474 proteins in the S-nitrosylated proteome study. With this approach, we observed that proteins treated with NO at low concentrations presented a proliferative response pattern, with several proteins involved in cellular cycle regulation and growth being activated. These proteins appear to play important roles in fungal virulence. On the other hand, fungus stimulated by high NO concentrations exhibited a survival response pattern. Among these S-nitrosylated proteins we identified several potential molecular targets for fungal disease therapy, including cell wall integrity (CWI) pathway, amino acid and folic acid metabolisms. In addition, we detected that the transnitrosylation/denitrosylation redox signaling are preserved in this fungus. Finally, this work may help to uncover the beneficial and antifungal properties of NO in the P. brasiliensis and point to useful targets for the development of antifungal drugs.

4.
Front. Microbiol. ; 11: 1184, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17752

RESUMO

The fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii are the causative agents of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. This fungus is considered a facultative intracellular pathogen that is able to survive and replicate inside macrophages. The survival of the fungus during infection depends on its adaptability to various conditions, such as nitrosative/oxidative stress produced by the host immune cells, particularly alveolar macrophages. Currently, there is little knowledge about the Paracoccidioides spp. signaling pathways involved in the fungus evasion mechanism of the host defense response. However, it is known that some of these pathways are triggered by reactive oxygen species and reactive nitrogen species (ROS/RNS) produced by host cells. Considering that the effects of NO (nitric oxide) on pathogens are concentration dependent, such effects could alter the redox state of cysteine residues by influencing (activating or inhibiting) a variety of protein functions, notably S-nitrosylation, a highly important NO-dependent posttranslational modification that regulates cellular functions and signaling pathways. It has been demonstrated by our group that P. brasiliensis yeast cells proliferate when exposed to low NO concentrations. Thus, this work investigated the modulation profile of S-nitrosylated proteins of P. brasiliensis, as well as identifying S-nitrosylation sites after treatment with RNS. Through mass spectrometry analysis (LC-MS/MS) and label-free quantification, it was possible to identify 474 proteins in the S-nitrosylated proteome study. With this approach, we observed that proteins treated with NO at low concentrations presented a proliferative response pattern, with several proteins involved in cellular cycle regulation and growth being activated. These proteins appear to play important roles in fungal virulence. On the other hand, fungus stimulated by high NO concentrations exhibited a survival response pattern. Among these S-nitrosylated proteins we identified several potential molecular targets for fungal disease therapy, including cell wall integrity (CWI) pathway, amino acid and folic acid metabolisms. In addition, we detected that the transnitrosylation/denitrosylation redox signaling are preserved in this fungus. Finally, this work may help to uncover the beneficial and antifungal properties of NO in the P. brasiliensis and point to useful targets for the development of antifungal drugs.

5.
Front Microbiol, v. 11, 1184, jun. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4834

RESUMO

The fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii are the causative agents of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. This fungus is considered a facultative intracellular pathogen that is able to survive and replicate inside macrophages. The survival of the fungus during infection depends on its adaptability to various conditions, such as nitrosative/oxidative stress produced by the host immune cells, particularly alveolar macrophages. Currently, there is little knowledge about the Paracoccidioides spp. signaling pathways involved in the fungus evasion mechanism of the host defense response. However, it is known that some of these pathways are triggered by reactive oxygen species and reactive nitrogen species (ROS/RNS) produced by host cells. Considering that the effects of NO (nitric oxide) on pathogens are concentration dependent, such effects could alter the redox state of cysteine residues by influencing (activating or inhibiting) a variety of protein functions, notably S-nitrosylation, a highly important NO-dependent posttranslational modification that regulates cellular functions and signaling pathways. It has been demonstrated by our group that P. brasiliensis yeast cells proliferate when exposed to low NO concentrations. Thus, this work investigated the modulation profile of S-nitrosylated proteins of P. brasiliensis, as well as identifying S-nitrosylation sites after treatment with RNS. Through mass spectrometry analysis (LC-MS/MS) and label-free quantification, it was possible to identify 474 proteins in the S-nitrosylated proteome study. With this approach, we observed that proteins treated with NO at low concentrations presented a proliferative response pattern, with several proteins involved in cellular cycle regulation and growth being activated. These proteins appear to play important roles in fungal virulence. On the other hand, fungus stimulated by high NO concentrations exhibited a survival response pattern. Among these S-nitrosylated proteins we identified several potential molecular targets for fungal disease therapy, including cell wall integrity (CWI) pathway, amino acid and folic acid metabolisms. In addition, we detected that the transnitrosylation/denitrosylation redox signaling are preserved in this fungus. Finally, this work may help to uncover the beneficial and antifungal properties of NO in the P. brasiliensis and point to useful targets for the development of antifungal drugs.

6.
Front Microbiol, v. 11, 1184, jun. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4126

RESUMO

The fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii are the causative agents of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. This fungus is considered a facultative intracellular pathogen that is able to survive and replicate inside macrophages. The survival of the fungus during infection depends on its adaptability to various conditions, such as nitrosative/oxidative stress produced by the host immune cells, particularly alveolar macrophages. Currently, there is little knowledge about the Paracoccidioides spp. signaling pathways involved in the fungus evasion mechanism of the host defense response. However, it is known that some of these pathways are triggered by reactive oxygen species and reactive nitrogen species (ROS/RNS) produced by host cells. Considering that the effects of NO (nitric oxide) on pathogens are concentration dependent, such effects could alter the redox state of cysteine residues by influencing (activating or inhibiting) a variety of protein functions, notably S-nitrosylation, a highly important NO-dependent posttranslational modification that regulates cellular functions and signaling pathways. It has been demonstrated by our group that P. brasiliensis yeast cells proliferate when exposed to low NO concentrations. Thus, this work investigated the modulation profile of S-nitrosylated proteins of P. brasiliensis, as well as identifying S-nitrosylation sites after treatment with RNS. Through mass spectrometry analysis (LC-MS/MS) and label-free quantification, it was possible to identify 474 proteins in the S-nitrosylated proteome study. With this approach, we observed that proteins treated with NO at low concentrations presented a proliferative response pattern, with several proteins involved in cellular cycle regulation and growth being activated. These proteins appear to play important roles in fungal virulence. On the other hand, fungus stimulated by high NO concentrations exhibited a survival response pattern. Among these S-nitrosylated proteins we identified several potential molecular targets for fungal disease therapy, including cell wall integrity (CWI) pathway, amino acid and folic acid metabolisms. In addition, we detected that the transnitrosylation/denitrosylation redox signaling are preserved in this fungus. Finally, this work may help to uncover the beneficial and antifungal properties of NO in the P. brasiliensis and point to useful targets for the development of antifungal drugs.

7.
Nitric Oxide ; 93: 78-89, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539562

RESUMO

Human immunodeficiency virus (HIV) infections are typically accompanied by high levels of secreted inflammatory cytokines and generation of high levels of reactive oxygen species (ROS). To elucidate how HIV-1 alters the cellular redox environment during viral replication, we used human HIV-1 infected CD4+T lymphocytes and uninfected cells as controls. ROS and nitric oxide (NO) generation, antioxidant enzyme activity, protein phosphorylation, and viral and proviral loads were measured at different times (2-36 h post-infection) in the presence and absence of the NO donor S-nitroso-N-acetylpenicillamine (SNAP). HIV-1 infection increased ROS generation and decreased intracellular NO content. Upon infection, we observed increases in copper/zinc superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities, and a marked decrease in glutathione (GSH) concentration. Exposure of HIV-1 infected CD4+T lymphocytes to SNAP resulted in an increasingly oxidizing intracellular environment, associated with tyrosine nitration and SOD1 inhibition. In addition, SNAP treatment promoted phosphorylation and activation of the host's signaling proteins, PKC, Src kinase and Akt. Inhibition of PKC leads to inhibition of Src kinase strongly suggesting that PKC is the upstream element in this signaling cascade. Changes in the intracellular redox environment after SNAP treatment had an effect on HIV-1 replication as reflected by increases in proviral and viral loads. In the absence or presence of SNAP, we observed a decrease in viral load in infected CD4+T lymphocytes pre-incubated with the PKC inhibitor GF109203X. In conclusion, oxidative/nitrosative stress conditions derived from exposure of HIV-1-infected CD4+T lymphocytes to an exogenous NO source trigger a signaling cascade involving PKC, Src kinase and Akt. Activation of this signaling cascade appears to be critical to the establishment of HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , HIV-1/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Replicação Viral/fisiologia , Infecções por HIV , Humanos , Doadores de Óxido Nítrico/farmacologia , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Quinases da Família src/metabolismo
8.
Nitric Oxide ; 86: 1-11, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30772503

RESUMO

Paracoccidioides brasiliensis is a temperature-dependent dimorphic fungus that cause paracoccidioidomycosis (PCM), the major systemic mycosis in Latin America. The capacity to evade the innate immune response of the host is due to P. brasiliensis ability to respond and to survive the nitrosative stress caused by phagocytic cells. However, the regulation of signal transduction pathways associated to nitrosative stress response are poorly understood. Ras GTPase play an important role in the various cellular events in many fungi. Ras, in its activated form (Ras-GTP), interacts with effector proteins and can initiate a kinase cascade. In this report, we investigated the role of Ras GTPase in P. brasiliensis after in vitro stimulus with nitric oxide (NO). We observed that low concentrations of NO induced cell proliferation in P. brasiliensis, while high concentrations promoted decrease in fungal viability, and both events were reversed in the presence of a NO scavenger. We observed that high levels of NO induced Ras activation and its S-nitrosylation. Additionally, we showed that Ras modulated the expression of antioxidant genes in response to nitrosative stress. We find that the Hog1 MAP kinase contributed to nitrosative stress response in P. brasiliensis in a Ras-dependent manner. Taken together, our data demonstrate the relationship between Ras-GTPase and Hog1 MAPK pathway allowing for the P. brasiliensis adaptation to nitrosative stress.


Assuntos
Proteínas Fúngicas/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Estresse Nitrosativo/fisiologia , Paracoccidioides/fisiologia , Proteínas ras/fisiologia , Sequência de Aminoácidos , Animais , Morte Celular/fisiologia , Proliferação de Células/fisiologia , Expressão Gênica/fisiologia , Masculino , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico/química , Óxido Nítrico/farmacologia , Processamento de Proteína Pós-Traducional
9.
Free Radic Res ; 52(5): 592-604, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29651879

RESUMO

Tumour progression involves the establishment of tumour metastases at distant sites. Resistance to anoikis, a form of cell death that occurs when cells lose contact with the extracellular matrix and with neighbouring cells, is essential for metastases. NO has been associated with anoikis. NO treated HeLa cells and murine melanoma cells in suspension triggered a nitric oxide (NO)-Src kinase signalling circuitry that enabled resistance to anoikis. Two NO donors, sodium nitroprusside (SNP) (500 µM) and DETANO (125 µM), protected against cell death derived from detachment of a growth permissive surface (experimental anoikis). Under conditions of NO-mediated Src activation the following were observed: (a) down-regulation of the pro-apoptotic proteins Bim and cleaved caspase-3 and the cell surface protein, E-cadherin, (b) up-regulation of caveolin-1, and (c) the dissociation of cell aggregates formed when cells are detached from a growth permissive surface. Efficiency of reattachment of tumour cells in suspension and treated with different concentrations of an NO donor, was dependent on the NO concentration. These findings indicate that NO-activated Src kinase triggers a signalling circuitry that provides resistance to anoikis, and allows for metastases.


Assuntos
Anoikis/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Compostos Nitrosos/farmacologia , Quinases da Família src/genética , Animais , Anoikis/genética , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Ativação Enzimática/efeitos dos fármacos , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Melanoma Experimental/enzimologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Óxido Nítrico/química , Doadores de Óxido Nítrico/química , Nitroprussiato/química , Compostos Nitrosos/química , Transdução de Sinais , Células Tumorais Cultivadas , Quinases da Família src/metabolismo
10.
FEMS Yeast Res ; 18(2)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29409063

RESUMO

Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis (PCM), a cause of disease in healthy and immunocompromised persons in Latin America. The infection begins after inhalation of the fungal propagules and their thermo-dimorphic shift to yeast form. The development of the disease depends on factors associated with the host immune response and the infectious agent's characteristics, especially virulence. The oxidative stress response is an important virulence attribute in several fungi. In this study, we assessed the enzymatic repertoire of responses to oxidative stress in the Pb18 isolate with different degrees of virulence. The virulence of attenuated Pb18 (aPb18) strain was recovered after several animal passages. Virulent strain (vPb18) showed an effective fungal oxidative stress response and several genes involved in response to oxidative stress were up-regulated in this isolate. These genes expressed the same profile when we recovered the phenotypic virulence in attenuated strain aPb18. Our study demonstrated that attenuated P. brasiliensis recovered their virulence after serial animal passages (vPb18), and this process positively modulated the fungus's antioxidant repertoire.


Assuntos
Antioxidantes/metabolismo , Paracoccidioides/fisiologia , Paracoccidioidomicose/microbiologia , Animais , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Paracoccidioides/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Virulência
11.
Microbes Infect ; 19(1): 34-46, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27590702

RESUMO

Paracoccidioides brasiliensis, a thermally dimorphic fungus, is the causative agent of paracoccidioidomycosis, a systemic mycosis that is widespread in Latin America. This fungus is a facultative intracellular pathogen able to survive and replicate inside non-activated macrophages. Therefore, the survival of P. brasiliensis inside the host depends on the ability to adapt to oxidative stress induced by immune cells, especially alveolar macrophages. For several years, reactive oxygen species (ROS) were only associated with pathological processes. Currently, a plethora of roles for ROS in cell signaling have emerged. We have previously reported that low ROS concentrations cause cell proliferation in the human pathogenic fungus P. brasiliensis. In the present report, we investigated the influence of phosphorylation events in that process. Using a mass spectrometry-based approach, we mapped 440 phosphorylation sites in 230 P. brasiliensis proteins and showed that phosphorylation at different sites determines fungal responses to oxidative stress, which are regulated by phosphatases and kinases activities. Furthermore, we present additional evidence for a functional two-component signal transduction system in P. brasiliensis. These findings will help us to understand the phosphorylation events involved in the oxidative stress response.


Assuntos
Proteínas Fúngicas/análise , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Patógeno , Estresse Oxidativo , Paracoccidioides/patogenicidade , Fosfoproteínas/análise , Proteoma/análise , Humanos , Espectrometria de Massas , Transdução de Sinais
12.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15550

RESUMO

Paracoccidioides brasiliensis, a thermally dimorphic fungus, is the causative agent of paracoccidioidomycosis, a systemic mycosis that is widespread in Latin America. This fungus is a facultative intracellular pathogen able to survive and replicate inside non-activated macrophages. Therefore, the survival of P. brasiliensis inside the host depends on the ability to adapt to oxidative stress induced by immune cells, especially alveolar macrophages. For several years, reactive oxygen species (ROS) were only associated with pathological processes. Currently, a plethora of roles for ROS in cell signaling have emerged. We have previously reported that low ROS concentrations cause cell proliferation in the human pathogenic fungus P. brasiliensis. In the present report, we investigated the influence of phosphorylation events in that process. Using a mass spectrometry-based approach, we mapped 440 phosphorylation sites in 230 P. brasiliensis proteins and showed that phosphorylation at different sites determines fungal responses to oxidative stress, which are regulated by phosphatases and kinases activities. Furthermore, we present additional evidence for a functional two-component signal transduction system in P. brasiliensis. These findings will help us to understand the phosphorylation events involved in the oxidative stress response.

13.
Microbes Infect. ; 19(1): 34-46, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13609

RESUMO

Paracoccidioides brasiliensis, a thermally dimorphic fungus, is the causative agent of paracoccidioidomycosis, a systemic mycosis that is widespread in Latin America. This fungus is a facultative intracellular pathogen able to survive and replicate inside non-activated macrophages. Therefore, the survival of P. brasiliensis inside the host depends on the ability to adapt to oxidative stress induced by immune cells, especially alveolar macrophages. For several years, reactive oxygen species (ROS) were only associated with pathological processes. Currently, a plethora of roles for ROS in cell signaling have emerged. We have previously reported that low ROS concentrations cause cell proliferation in the human pathogenic fungus P. brasiliensis. In the present report, we investigated the influence of phosphorylation events in that process. Using a mass spectrometry-based approach, we mapped 440 phosphorylation sites in 230 P. brasiliensis proteins and showed that phosphorylation at different sites determines fungal responses to oxidative stress, which are regulated by phosphatases and kinases activities. Furthermore, we present additional evidence for a functional two-component signal transduction system in P. brasiliensis. These findings will help us to understand the phosphorylation events involved in the oxidative stress response.

14.
FEMS Yeast Res ; 16(5)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27268997

RESUMO

Paracoccidioides brasiliensis and P. lutzii, thermally dimorphic fungi, are the causative agents of paracoccidioidomycosis (PCM). Paracoccidioides infection occurs when conidia or mycelium fragments are inhaled by the host, which causes the Paracoccidioides cells to transition to the yeast form. The development of disease requires conidia inside the host alveoli to differentiate into yeast cells in a temperature-dependent manner. We describe the presence of a two-component signal transduction system in P. brasiliensis, which we investigated by expression analysis of a hypothetical protein gene (PADG_07579) that showed high similarity with the dimorphism-regulating histidine kinase (DRK1) gene of Blastomyces dermatitidis and Histoplasma capsulatum This gene was sensitive to environmental redox changes, which was demonstrated by a dose-dependent decrease in transcript levels after peroxide stimulation and a subtler decrease in transcript levels after NO stimulation. Furthermore, the higher PbDRK1 levels after treatment with increasing NaCl concentrations suggest that this histidine kinase can play a role as osmosensing. In the mycelium-yeast (M→Y) transition, PbDRK1 mRNA expression increased 14-fold after 24 h incubation at 37°C, consistent with similar observations in other virulent fungi. These results demonstrate that the PbDRK1 gene is differentially expressed during the dimorphic M→Y transition. Finally, when P. brasiliensis mycelium cells were exposed to a histidine kinase inhibitor and incubated at 37°C, there was a delay in the dimorphic M→Y transition, suggesting that histidine kinases could be targets of interest for PCM therapy.


Assuntos
Regulação Fúngica da Expressão Gênica , Histidina Quinase/metabolismo , Paracoccidioides/citologia , Paracoccidioides/genética , Oxidantes/metabolismo , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/enzimologia , Transdução de Sinais , Cloreto de Sódio/metabolismo , Temperatura
15.
Nitric Oxide ; 47: 40-51, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25819133

RESUMO

The small GTP-binding proteins Ras and Rac1 are molecular switches exchanging GDP for GTP and converting external signals in response to a variety of stimuli. Ras and Rac1 play an important role in cell proliferation, cell differentiation, and cell migration. Rac1 is directly involved in the reorganization and changes in the cytoskeleton during cell motility. Nitric oxide (NO) stimulates the Ras - ERK1/2 MAP kinases signaling pathway and is involved in the interaction between Ras and the phosphatidyl-inositol-3 Kinase (PI3K) signaling pathway and cell migration. This study utilizes bradykinin (BK), which promotes endogenous production of NO, in an investigation of the role of NO in the activation of Rac1 in rabbit aortic endothelial cells (RAEC). NO-derived from BK stimulation of RAEC and incubation of the cells with the s-nitrosothiol S-nitrosoglutathione (GSNO) activated Rac1. NO-derived from BK stimulation promoted RAEC migration over a period of 12 h. The use of RAEC permanently transfected with the dominant negative mutant of Ras (Ras(N17)) or with the non-nitrosatable mutant of Ras (Ras(C118S)); and the use of specific inhibitors of: Ras, PI3K, and Rac1 resulted in inhibition of NO-mediated Rac1 activation. BK-stimulated s-nitrosylation of Ras in RAEC mediates Rac1 activation and cell migration. Inhibition of NO-mediated Rac1 activation resulted in inhibition of endothelial cell migration. In conclusion, the NO indirect activation of Rac1 involves the direct participation of Ras and PI3K in the migration of endothelial cells stimulated with BK.


Assuntos
Movimento Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Óxido Nítrico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Bradicinina/farmacologia , Células Endoteliais/metabolismo , Humanos , Óxido Nítrico/biossíntese
16.
J Proteome Res ; 13(10): 4259-71, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25145636

RESUMO

Few virulence factors have been identified for Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis. In this study, we quantitatively evaluated the protein composition of P. brasiliensis in the yeast phase using minimal and rich media to obtain a better understanding of its virulence and to gain new insights into pathogen adaptation strategies. This analysis was performed on two isolates of the Pb18 strain showing distinct infection profiles in B10.A mice. Using liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis, we identified and quantified 316 proteins in minimal medium, 29 of which were overexpressed in virulent Pb18. In rich medium, 29 out of 295 proteins were overexpressed in the virulent fungus. Three proteins were found to be up-regulated in both media, suggesting the potential roles of these proteins in virulence regulation in P. brasiliensis. Moreover, genes up-regulated in virulent Pb18 showed an increase in its expression after the recovery of virulence of attenuated Pb18. Proteins up-regulated in both isolates were grouped according to their functional categories. Virulent Pb18 undergoes metabolic reorganization and increased expression of proteins involved in fermentative respiration. This approach allowed us to identify potential virulence regulators and provided a foundation for achieving a molecular understanding of how Paracoccidioides modulates the host-pathogen interaction to its advantage.


Assuntos
Proteínas Fúngicas/metabolismo , Paracoccidioides/patogenicidade , Proteômica , Espectrometria de Massas , Paracoccidioides/crescimento & desenvolvimento , Paracoccidioides/metabolismo , Reação em Cadeia da Polimerase , RNA Fúngico/genética , RNA Fúngico/isolamento & purificação , Virulência
17.
Arch Biochem Biophys ; 558: 14-27, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24960080

RESUMO

Nitric oxide (NO) is involved in angiogenesis and stimulates the EGF-R signaling pathway. Stimulation of different endothelial cell lines with bradykinin (BK) activates the endothelial NO synthase (eNOS) and promotes EGF-R tyrosine phosphorylation. Increase in NO production correlated with enhanced phosphorylation of tyrosine residues and S-nitrosylation of the EGF-R. NO-mediated stimulatory effects on tyrosine phosphorylation of the EGF-R, where cGMP independent. Inhibition of soluble guanylyl cyclase followed by BK stimulation of human umbilical vein endothelial cells (HUVECs) did not change tyrosine phosphorylation levels of EGF-R. BK-stimulation of HUVEC promoted S-nitrosylation of the phosphatase SHP-1 and of p21Ras. Phosphorylation and activation of the ERK1/2 MAP kinases mediated by BK was dependent on the activation of the B2 receptor, of the EGF-R, and of p21 Ras. Inhibition of BK-stimulated S-nitrosylation prevented the activation of the ERK1/2 MAP kinases. Furthermore, activated ERK1/2 MAP kinases inhibited internalization of EGF-R by phosphorylating specific Thr residues of its cytoplasmic domain. BK-induced proliferation of endothelial cells was partially inhibited by the NOS inhibitor (L-NAME) and by the MEK inhibitor (PD98059). BK stimulated the expression of vascular endothelial growth factor (VEGF). VEGF expression was dependent on the activation of the EGF-R, the B2 receptor, p21Ras, and on NO generation. A Matrigel®-based in vitro assay for angiogenesis showed that BK induced the formation of capillary-like structures in HUVEC, but not in those cells expressing a mutant of the EGF-R lacking tyrosine kinase activity. Additionally, pre-treatment of BK-stimulated HUVEC with L-NAME, PD98059, and with SU5416, a specific inhibitor of VEGFR resulted in inhibition of in vitro angiogenesis. Our findings indicate that BK-mediated angiogenesis in endothelial cells involves the induction of the expression of VEGF associated with the activation of the NO/EGF-R/p21Ras/ERK1/2 MAP kinases signaling pathway.


Assuntos
Indutores da Angiogênese/farmacologia , Bradicinina/farmacologia , Receptores ErbB/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Óxido Nítrico/biossíntese , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Coelhos , S-Nitrosotióis/metabolismo , Tirosina/metabolismo
18.
Med Mycol ; 52(2): 187-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24577000

RESUMO

Paracoccidioides brasiliensis and P. lutzii are temperature-dependent dimorphic fungi that cause paracoccidioidomycosis (PCM). Previously, we characterized the PbMDJ1 gene. This gene encodes P. brasiliensis chaperone Mdj1, which in yeast is a mitochondrial member of the J-domain family, whose main function is to regulate cognate Hsp70 activities. We produced rabbit polyclonal antibody antirecombinant PbMdj1 (rPbMdj1), which labeled the protein not only in mitochondria but also at the cell wall of P. brasiliensis yeasts of isolate Pb18. Here we used anti-rPbMdj1 in confocal microscopy to localize Mdj1 in Pb18 and other fungal isolates grown at different temperatures. Dual intracellular and cell surface pattern were initially seen in yeast-phase P. brasiliensis Pb3, Pb18 (control), P. lutzii Pb01, and Histoplasma capsulatum. Pb18 and Aspergillus fumigatus hyphae as well as Pb3 pseudo hyphae formed at 36°C were labeled predominantly along the cell surface. Preferential surface localization was observed by 72 h of yeast-mycelium thermotransition. It was interesting to observe that anti-rPbMdj1 concentrated at the surface tip and branching points of A. fumigatus hyphae grown at 36°C, suggesting a role in growth, whereas at 23°C, anti-rPbMdj1 was distributed along the hyphal surface. In Pb3, Pb18, and Pb01 mitochondrial extracts, the antibodies revealed a specific 55-kDa band, which corresponds to the processed Mdj1 size. The presence of Mdj1 on the fungal cell wall suggests that this protein could also play a role in the interaction with the host.


Assuntos
Aspergillus fumigatus/química , Parede Celular/química , Histoplasma/química , Mitocôndrias/química , Paracoccidioides/química , Fatores de Transcrição/análise , Animais , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/efeitos da radiação , Histoplasma/crescimento & desenvolvimento , Histoplasma/efeitos da radiação , Hifas/química , Microscopia Confocal , Paracoccidioides/crescimento & desenvolvimento , Paracoccidioides/efeitos da radiação , Coelhos , Temperatura
19.
Antioxid Redox Signal ; 18(3): 221-38, 2013 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22894707

RESUMO

AIMS: S-nitrosylation of Cys118 is a redox-based mechanism for Ras activation mediated by nitric oxide (NO) at the plasma membrane. RESULTS: Ras signaling pathway stimulation by 50 and/or 100 µM of S-nitrosoglutathione (GSNO) causes proliferation of HeLa cells. Proliferation was not observed in HeLa cells overexpressing non-nitrosatable H-Ras(C118S). HeLa cells overexpressing H-Ras(wt) containing the spatiotemporal probe green fluorescent protein (GFP) fused to the Ras-binding domain of Raf-1 (GFP-RBD) incubated with 100 µM GSNO stimulated a rapid and transient redistribution of GFP-RBD to the plasma membrane, followed by a delayed and sustained recruitment to the Golgi. No activation of H-Ras at the plasma membrane occurred in cells overexpressing H-Ras(C118S), contrasting with a robust and sustained activation of the GTPase at the Golgi. Inhibition of Src kinase prevented cell proliferation and activation of H-Ras by GSNO at the Golgi. Human umbilical vein endothelial cells (HUVECs) stimulated with bradykinin to generate NO were used to differentiate cell proliferation and Ras activation at the plasma membrane versus Golgi. In this model, Src kinase was not involved in cell proliferation, whereas Ras activation proceeded only at the plasma membrane, indicating that HUVEC proliferation induced by NO resulted only from stimulation of Ras. INNOVATION: The present work is the first to demonstrate that NO-mediated activation of Ras in different subcellular compartments regulates different downstream signaling pathways. CONCLUSION: S-nitrosylation of H-Ras at Cys(118) and the activation of Src kinase are spatiotemporally linked events of the S-nitrosothiol-mediated signaling pathway that occurs at the plasma membrane and at the Golgi. The nonparticipation of Src kinase and the localized production of NO by endothelial NO synthase at the plasma membrane limited NO-mediated Ras activation to the plasma membrane.


Assuntos
Proliferação de Células , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , S-Nitrosoglutationa/farmacologia , Animais , Bradicinina/farmacologia , Células COS , Sinalização do Cálcio , Membrana Celular/enzimologia , Chlorocebus aethiops , Cisteína/análogos & derivados , Cisteína/metabolismo , Ativação Enzimática , Complexo de Golgi/enzimologia , Células HeLa , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Óxido Nítrico/fisiologia , Oxirredução , Fosfolipase C gama/antagonistas & inibidores , Fosfolipase C gama/metabolismo , Processamento de Proteína Pós-Traducional , S-Nitrosotióis/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
20.
Mol Cancer Res ; 9(11): 1471-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21900362

RESUMO

Phage-display peptide libraries have been widely used to identify specific peptides targeting in vivo tumor cells and the tumor vasculature and playing an important role in the discovery of antitumor bioactive peptides. In the present work, we identified a new melanoma-homing peptide, (-CVNHPAFAC-), using a C7C phage-display library directed to the developing tumor in syngeneic mice. Phage were able to preferentially target melanoma in vivo, with an affinity about 50-fold greater than that with normal tissue, and the respective synthesized peptide displaced the corresponding phage from the tumor. A preferential binding to endothelial cells rather than to melanoma cells was seen in cell ELISA, suggesting that the peptide is directed to the melanoma vasculature. Furthermore, the peptide was able to bind to human sonic hedgehog, a protein involved in the development of many types of human cancers. Using a new peptide approach therapy, we coupled the cyclic peptide to another peptide, HTMYYHHYQHHL-NH(2), a known antagonist of VEGFR-2 receptor, using the GYG linker. The full peptide CVNHPAFACGYGHTMYYHHYQHHL-NH(2) was effective in delaying tumor growth (P < 0.05) and increasing animal survival when injected systemically, whereas a scramble-homing peptide containing the same antagonist did not have any effect. This is the first report on the synthesis of a tumor-homing peptide coupled to antiangiogenic peptide as a new anticancer therapeutics.


Assuntos
Inibidores da Angiogênese/farmacologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Biblioteca de Peptídeos , Peptídeos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Sequência de Aminoácidos , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacocinética , Animais , Sistemas de Liberação de Medicamentos , Humanos , Masculino , Melanoma Experimental/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Peptídeos/química , Peptídeos/farmacocinética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacocinética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...