Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 393(1): 43-55, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31420719

RESUMO

Neryl butyrate is a constituent of volatile oils obtained from aromatic plants. Aliphatic organic compound analogues chemically close to neryl butyrate possess vasodilator properties in rat aorta. To evaluate whether neryl butyrate has relaxing properties, this study tested its effects on isolated rat aorta. Unlike the analogues, neryl butyrate did not show relaxant profile in aortic rings precontracted with phenylephrine, but induced a contraction when it stimulated aortic rings under resting tonus. The contractile effect augmented in endothelium-denuded aortic rings. Treatment of endothelium-intact preparations with the nitric oxide synthase inhibitor L-NAME or the guanylyl cyclase inhibitor ODQ also augmented the contractile effect of neryl butyrate. Such phenomenon was absent in the presence of the cyclooxygenase inhibitor indomethacin. Contractile responses decreased in the presence of verapamil, a L-type Ca2+ channel blocker, or when Ca2+ was removed from the extracellular solution. Antagonists of α-adrenergic receptors (prazosin and yohimbine), but not the thromboxane-prostanoid receptor seratrodast, reversed the contraction induced by neryl butyrate. The α1A selective antagonist RS-17053 antagonized the neryl butyrate-induced contraction. The contraction caused by neryl butyrate was decreased by inhibiting the phospholipase C or the rho-associated kinase with U-73122 or Y-27632, respectively. Injected intravenously to awake rats, neryl butyrate induced arterial hypotension and bradycardia. Decreased frequency was also present in isolated right atrium preparations. In conclusion, the contractile effects of neryl butyrate were inhibited by α-adrenergic antagonists, indicating the involvement of α-adrenoceptors in the mechanism of action. In vivo, neryl butyrate caused hypotension, suggesting that other systemic influence than vasoconstriction may occur.


Assuntos
Aorta Torácica/efeitos dos fármacos , Butiratos/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Amidas/farmacologia , Animais , Aorta Torácica/fisiologia , Cálcio/farmacologia , Estrenos/farmacologia , Átrios do Coração/efeitos dos fármacos , Técnicas In Vitro , Masculino , Fenilefrina/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirrolidinonas/farmacologia , Ratos Wistar
2.
Clin Exp Pharmacol Physiol ; 46(1): 40-47, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30229988

RESUMO

ß-Phenylethylamine (ß-PEA) is a trace amine with chemical proximity to biogenic amines and amphetamines. It is an endogenous agonist of trace amine-associated receptors (TAARs) that acts as a neuromodulator of classic neurotransmitters in the central nervous system. At high concentrations, ß-PEA contracts smooth muscle, and a role for TAARs in these responses has been postulated. The high dietary intake of trace amines has been associated with such symptoms as hypertension and migraine, especially after the intake of foods containing such compounds. In gastrointestinal tissues, TAAR expression was reported, although the effect of ß-PEA on gastric contractile behaviour is unknown. Here, isolated strips that were obtained from the rat gastric fundus were stimulated with high micromolar concentrations of ß-PEA. Under resting tonus, ß-PEA induced contractions. In contrast, when the strips were previously contracted with KCl, a relaxant response to ß-PEA was observed. The contractile effect of ß-PEA was inhibited by 5-hydroxytryptamine (5-HT) receptor antagonists (i.e., cyproheptadine and ketanserin) but not by the TAAR1 antagonist EPPTB. In gastric fundus strips that were previously contracted with 80 mmol/L KCl, the relaxant effect of ß-PEA intensified in the presence of 5-HT receptor antagonists, which was inhibited by EPPTB and the adenylyl cyclase inhibitor MDL-12,330A. The guanylyl cyclase inhibitor ODQ did not alter the relaxant effects of ß-PEA. In conclusion, ß-PEA exerted dual contractile and relaxant effects on rat gastric fundus. The contractile effect appeared to involve the recruitment of 5-HT receptors, and the relaxant effect of ß-PEA on KCl-elicited contractions likely involved TAAR1 .


Assuntos
Fundo Gástrico/efeitos dos fármacos , Fundo Gástrico/fisiologia , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Fenetilaminas/farmacologia , Animais , Fundo Gástrico/metabolismo , Contração Muscular/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Serotonina/metabolismo
3.
Exp Physiol ; 104(2): 199-208, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30561099

RESUMO

NEW FINDINGS: What is the central question of this study? Is the responsiveness of isolated segments of the rat oesophagus to contractile or relaxant stimuli susceptible to acute luminal exposure of the oesophagus to an acid solution that contains pepsin and bile salt? What is the main finding and its importance? The study reveals that luminal acidity is an important factor that disrupts barrier function in the oesophagus to allow the diffusion of noxious agents, such as bile acid, that alter the contractile status of the oesophageal body, even in the absence of inflammation. ABSTRACT: We investigated whether the experimental simulation of duodenogastro-oesophageal reflux alters the contractile responsiveness of rat oesophageal strips. After 30 min of luminal exposure to a solution at acid pH that contained pepsin and taurodeoxycholic acid, isolated strips of the rat oesophagus and gastro-oesophageal junction were subjected to contractile or relaxing stimuli. Acid challenge decreased the responsiveness of oesophageal strips to contractile stimulation, especially in oesophageal preparations that were mounted following the circular orientation of the muscularis externa layer. The contractility of longitudinal preparations of the rat oesophagus appeared less susceptible to the deleterious effects of acid challenge. In contrast, the responsiveness of ring-like preparations from the gastro-oesophageal junction to contractile stimulation was unaltered by acid challenge. Taurodeoxycholic acid decreased the responsiveness of circular oesophageal preparations to KCl, an effect that was exacerbated by luminal acidity. On the contrary, although the relaxant ability of the rat oesophagus did not change, acid challenge increased the relaxant efficacy of sodium nitroprusside and isoprenaline in strips of the gastro-oesophageal junction. A significant decrease in transepithelial electrical resistance was seen when the oesophageal mucosa was challenged at pH 1 but not at pH 4. Treatment with alginate blunted the deleterious effects of acid challenge on transepithelial electrical resistance and the responsiveness of oesophageal preparations to KCl. The present findings support the notion that luminal acidity is an important factor that disrupts barrier function in the oesophagus to allow the diffusion of noxious agents, such as bile acid, that alter the contractile status of the oesophagus.


Assuntos
Mucosa Esofágica/fisiopatologia , Esôfago/fisiopatologia , Contração Muscular/fisiologia , Músculo Liso/fisiopatologia , Animais , Impedância Elétrica , Refluxo Gastroesofágico/fisiopatologia , Concentração de Íons de Hidrogênio , Masculino , Ratos , Ratos Wistar
4.
Exp Physiol ; 102(12): 1607-1618, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28929535

RESUMO

NEW FINDINGS: What is the central question of this study? Acute acidosis that results from short-term exercise is involved in delayed gastric emptying in rats and the lower responsiveness of gastric fundus strips to carbachol. Does extracellular acidosis decrease responsiveness to carbachol in tissues of sedentary rats? How? What is the main finding and its importance? Extracellular acidosis inhibits cholinergic signalling in the rat gastric fundus by selectively influencing the Gq/11 protein signalling pathway. Acute acidosis that results from short-term exercise delays gastric emptying in rats and decreases the responsiveness to carbachol in gastric fundus strips. The regulation of cytosolic Ca2+ concentrations appears to be a mechanism of action of acidosis. The present study investigated the way in which acidosis interferes with gastric smooth muscle contractions. Rat gastric fundus isolated strips at pH 6.0 presented a lower magnitude of carbachol-induced contractions compared with preparations at pH 7.4. This lower magnitude was absent in carbachol-stimulated duodenum and KCl-stimulated gastric fundus strips. In Ca2+ -free conditions, repeated contractions that were induced by carbachol progressively decreased, with no influence of extracellular pH. In fundus strips, CaCl2 -induced contractions were lower at pH 6.0 than at pH 7.4 but only when stimulated in the combined presence of carbachol and verapamil. In contrast, verapamil-sensitive contractions that were induced by CaCl2 in the presence of KCl did not change with pH acidification. In Ca2+ store-depleted preparations that were treated with thapsigargin, the contractions that were induced by extracellular Ca2+ restoration were smaller at pH 6.0 than at pH 7.4, but relaxation that was induced by SKF-96365 (an inhibitor of store-operated Ca2+ entry) was unaltered by extracellular acidification. At pH 6.0, the phospholipase C inhibitor U-73122 relaxed carbachol-induced contractions less than at pH 7.4, and this phenomenon was absent in tissue that was treated with the RhoA kinase blocker Y-27632. Thus, extracellular acidosis inhibited pharmacomechanical coupling in gastric fundus by selectively inhibiting the Gq/11 protein signalling pathway, whereas electromechanical coupling remained functionally preserved.


Assuntos
Acidose/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Esvaziamento Gástrico/efeitos dos fármacos , Fundo Gástrico/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Fundo Gástrico/metabolismo , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Masculino , Músculo Liso/metabolismo , Ratos Wistar
5.
Naunyn Schmiedebergs Arch Pharmacol ; 390(10): 1029-1039, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28717838

RESUMO

To characterize the protective effects of the triterpenoid mixture alpha, beta-amyrin (AMY, 20 mg/kg, during 15 days) on the reactivity of isolated aorta of high-fat diet (HFD)-induced obese mice. Male Swiss mice were fed with HFD or normal diet (ND) for 15 weeks. Contractions of thoracic aorta in response to KCl or phenylephrine (PHE) and relaxation by acetylcholine (ACh) or sodium nitroprusside (SNP) were analyzed. HFD-fed mice developed hyperglycemia, hyperlipidemia, and significant body weight gain, parameters prevented by AMY treatment. Whereas aortic contractility did not differ in response to KCl, contractions induced by PHE (1 µM) as well as relaxation induced by ACh (1-30 µM) or SNP (1 nM-0.1 mM) on PHE-contracted aorta were decreased (p < 0.05) in tissues of HFD compared to ND mice, phenomenon significantly (p < 0.05) diminished in HFD mice treated with AMY. The relaxant actions of ACh and SNP were inhibited (p < 0.05) by tetraethylammonium (TEA, 5 mM), apamin (0.1 µM), and 4-aminopyridine (4-AP; 3 mM) in aortae from ND group, but not from HFD. Treatment of HFD mice with AMY rescued the inhibitory effect of TEA (p < 0.05) on vasorelaxant actions of ACh and SNP. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) inhibited similarly the relaxant effects of SNP in all groups. 8-Br-cGMP relaxed with similar profile aortae of all groups. By preventing HFD-induced obesity in mice, AMY rescued the blunted contractile response to PHE, and the attenuated vasorelaxation and K+ channel activation (opening) induced by ACh and SNP in isolated aorta.


Assuntos
Aorta Torácica/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Obesidade/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Aorta Torácica/fisiologia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Masculino , Camundongos , Obesidade/etiologia , Obesidade/fisiopatologia , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Vasoconstrição/fisiologia , Vasodilatação/fisiologia
6.
Adv Physiol Educ ; 41(2): 291-297, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526693

RESUMO

This study describes an undergraduate student laboratory activity using isolated preparations from rat gastrointestinal tissues that possess contractile profiles typically exhibited by striated and smooth muscle cells. While students are introduced to an ex vivo methodology, they can compare differences in trace experiments, twitch aspects, phasic and tonic properties, force-frequency relationships, and pharmacological responsiveness of esophageal (striated) and fundic (smooth muscle) segments. Muscle strips were subjected to electrical field stimulation (EFS) applied by platinum electrodes immersed in the physiological solution. The contractile profile of EFS responses varied between these two types of gut preparations. Atropine and tubocurarine revealed differential inhibitory influences in esophagus or fundus tissues; caffeine and procaine produced similar effects, i.e., potentiation and blockade of the EFS-induced contractile response in these tissues, respectively. Experimental results obtained during the activity helped the improvement of student learning about basic concepts previously discussed in theoretical lectures. To measure student learning with this laboratory exercise, a questionnaire was applied before and after the activity, and the number of expected correct answers, concerning the mechanisms of contraction in striated and smooth muscle, could be clearly evidenced.


Assuntos
Músculo Liso/fisiologia , Músculo Estriado/fisiologia , Fisiologia/educação , Animais , Estimulação Elétrica , Esôfago/citologia , Técnicas In Vitro , Contração Muscular , Músculo Liso/citologia , Músculo Estriado/citologia , Ratos , Estômago/citologia
7.
Clin Exp Pharmacol Physiol ; 43(11): 1054-1061, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27437904

RESUMO

2-Nitro-1-phenyl-1-propanol (NPP) is a nitro alcohol that is known as an intermediate in the synthesis of sympathomimetic agents, such as norephedrine. The present study investigated the vasoactive effects of NPP on rat aorta. In endothelium-intact aortic rings, NPP fully relaxed contractions that were induced by phenylephrine, KCl, and U-46619. The relaxant effects of NPP on phenylephrine-elicited contractions remained unaffected by NG-nitro-l-arginine methyl ester (l-NAME), indomethacin, propranolol, tetraethylammonium, 4-aminopyridine, and glibenclamide. Conversely, pretreatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), cis-N-(2-phenylcyclopentyl)-azacyclotridec-1-en-2-amine hydrochloride (MDL-12,330A), and N-[2-(P-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H-89) reduced the ability of NPP to relax contractions that were elicited by phenylephrine. NPP inhibited the vasoconstrictor response that was induced by Ca2+ in aortic rings that were stimulated by pharmacomechanical or electromechanical coupling with phenylephrine and 60 mmol/L KCl, respectively, and after the depletion of intracellular Ca2+ stores. Such effects of NPP were significantly reversed by pretreatment with the guanylyl cyclase inhibitor ODQ and weakly influenced by the adenylyl cyclase inhibitor MDL-12,330A. In Ca2+ -free medium, NPP inhibited transient contractions that were induced by phenylephrine but not caffeine. In homogenates of aortic rings, NPP increased cyclic guanosine 3',5'-monophosphate (cGMP) and cyclic adenosine 3'-5'-monophosphate levels, but this effect was statistically significant only for cGMP. In conclusion, in contrast to the vasoconstrictor amine norephedrine, NPP is a vasodilator in rat aorta, and its relaxant effects are likely attributable to cGMP production.


Assuntos
Aorta Torácica/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Nitrocompostos/farmacologia , Propanóis/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Aorta Torácica/fisiologia , Relação Dose-Resposta a Droga , Masculino , Músculo Liso Vascular/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Vasodilatação/fisiologia
8.
Planta Med ; 82(15): 1329-1334, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27124242

RESUMO

α-Terpineol is a monoterpene with smooth muscle relaxant properties. In this study, its effects on the gastric emptying rate of awake rats were evaluated with emphasis on the mode by which it induces gastrointestinal actions. Administered by gavage, α-terpineol (50 mg/kg) delayed gastric emptying of a liquid test meal at 10 min postprandial. Hexamethonium or guanethidine did not interfere with the retarding effect induced by α-terpineol, but atropine and L-NG-nitroarginine methyl ester abolished it. In vagotomized rats, α-terpineol did not delay gastric emptying. In isolated strips of gastric fundus, concentration-effect curves in response to carbamylcholine were higher in magnitude after treatment with the monoterpene. α-Terpineol (1 to 2000 µM) relaxed sustained contractions induced by carbamylcholine or a high K+ concentration in a concentration-dependent manner. This relaxing effect was not affected by the presence of L-NG-nitroarginine methyl ester, 1 H-[1, 2, 4]oxadiazolo[4,3-a]quinoxalin-1-one, tetraethylammonium, or atropine. Smooth muscle contractions induced by electrical field stimulation were inhibited by α-terpineol. In conclusion, α-terpineol induced gastric retention in awake rats through mechanisms that depended on intact vagal innervation to the stomach, which involved cholinergic/nitrergic signalling. Such a retarding effect induced by α-terpineol appears not to result from a direct action of the monoterpene on gastric smooth muscle cells.


Assuntos
Cicloexenos/farmacologia , Esvaziamento Gástrico/efeitos dos fármacos , Fundo Gástrico/efeitos dos fármacos , Monoterpenos/farmacologia , Nervo Vago/efeitos dos fármacos , Animais , Atropina/farmacologia , Carbacol/farmacologia , Monoterpenos Cicloexânicos , Cicloexenos/administração & dosagem , Relação Dose-Resposta a Droga , Esvaziamento Gástrico/fisiologia , Guanetidina/farmacologia , Masculino , Monoterpenos/administração & dosagem , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Técnicas de Cultura de Órgãos , Potássio/farmacologia , Ratos Wistar , Simpatolíticos/farmacologia , Vagotomia , Nervo Vago/metabolismo , Nervo Vago/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...