Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1074395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36815012

RESUMO

Climate change has escalated the effect of drought on crop production as it has negatively altered the environmental condition. Wild watermelon grows abundantly in the Kgalagadi desert even though the environment is characterized by minimal rainfall, high temperatures and intense sunshine during growing season. This area is also characterized by sandy soils with low water holding capacity, thus bringing about drought stress. Drought stress affects crop productivity through its effects on development and physiological functions as dictated by molecular responses. Not only one or two physiological process or genes are responsible for drought tolerance, but a combination of various factors do work together to aid crop tolerance mechanism. Various studies have shown that wild watermelon possess superior qualities that aid its survival in unfavorable conditions. These mechanisms include resilient root growth, timely stomatal closure, chlorophyll fluorescence quenching under water deficit as key physiological responses. At biochemical and molecular level, the crop responds through citrulline accumulation and expression of genes associated with drought tolerance in this species and other plants. Previous salinity stress studies involving other plants have identified citrulline accumulation and expression of some of these genes (chloroplast APX, Type-2 metallothionein), to be associated with tolerance. Emerging evidence indicates that the upstream of functional genes are the transcription factor that regulates drought and salinity stress responses as well as adaptation. In this review we discuss the drought tolerance mechanisms in watermelons and some of its common indicators to salinity at physiological, biochemical and molecular level.

2.
GM Crops Food ; 5(3): 183-94, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25437237

RESUMO

In Botswana, approximately 40% of the population live in rural areas and derive most of their livelihood from agriculture by keeping livestock and practising arable farming. Due to the nature of their farming practises livestock and crops are exposed to diseases and environmental stresses. These challenges offer opportunities for application of biotechnology to develop adaptable materials to the country's environment. On the other hand, the perceived risk of genetically modified organisms (GMOs) has dimmed the promise of the technology for its application in agriculture. This calls for a holistic approach to the application of biotechnology to address issues of biosafety of GMOs. We have therefore assessed the potentials, challenges and opportunities to apply biotechnology with specific emphasis on agriculture, taking cognisance of requirement for its research, development and application in research and teaching institutions. In order to achieve this, resource availability, infrastructure, human and laboratory requirements were analyzed. The analysis revealed that the country has the capacity to carry out research in biotechnology in the development and production of genetically modified crops for food and fodder crops. These will include gene discovery, genetic transformation and development of systems to comply with the world regulatory framework on biosafety. In view of the challenges facing the country in agriculture, first generation biotech crops could be released for production. Novel GM products for development may include disease diagnosis kits, animal disease vaccines, and nutrient use efficiency, drought, and pest and disease resistant food and fodder crops.


Assuntos
Agricultura/métodos , Biotecnologia/métodos , Botsuana , Produtos Agrícolas , Plantas Geneticamente Modificadas
3.
Nat Commun ; 5: 5302, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25358745

RESUMO

Plants capture solar energy and atmospheric carbon dioxide (CO2) through photosynthesis, which is the primary component of crop yield, and needs to be increased considerably to meet the growing global demand for food. Environmental stresses, which are increasing with climate change, adversely affect photosynthetic carbon metabolism (PCM) and limit yield of cereals such as rice (Oryza sativa) that feeds half the world. To study the regulation of photosynthesis, we developed a rice gene regulatory network and identified a transcription factor HYR (HIGHER YIELD RICE) associated with PCM, which on expression in rice enhances photosynthesis under multiple environmental conditions, determining a morpho-physiological programme leading to higher grain yield under normal, drought and high-temperature stress conditions. We show HYR is a master regulator, directly activating photosynthesis genes, cascades of transcription factors and other downstream genes involved in PCM and yield stability under drought and high-temperature environmental stress conditions.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Adaptação Fisiológica , Biomassa , Secas , Grão Comestível/crescimento & desenvolvimento , Redes Reguladoras de Genes , Temperatura Alta , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética
4.
Methods Mol Biol ; 956: 209-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23135854

RESUMO

Drought and salinity stresses seriously affect rice plant growth and yield. The growing need to improve rice cultivars for drought and salt tolerance requires the development of reproducible screening methods that simulate field conditions, and which provide quantitative data for statistical testing and selection of genotypes with differential responses. In addition, the study of molecular responses to drought and salt stress requires controlled conditions for growth and treatments that are reportable and comparable between different laboratories. Drought, also known as soil water deficit, can result from insufficient moisture for a plant to grow adequately and complete its life cycle. Salinity due to excess sodium chloride affects rice at seedling and flowering stages, reducing root and leaf growth. Both these abiotic stresses can lead to major physiological and biochemical changes such as reduced photosynthesis and reprogramming of gene expression. The methods presented in this chapter can be applied for (a) examination of stress responses in rice vegetative and reproductive tissues to identify and characterize molecular and physiological responses; (b) testing of candidate genes by overexpression or knockout studies evaluated for altered stress response phenotypes; and (c) screening of different genotypes such as accessions or segregating populations for their quantitative responses to abiotic stress parameters.


Assuntos
Secas , Oryza/fisiologia , Fenótipo , Salinidade , Estresse Fisiológico , Adaptação Biológica/genética , Germinação , Oryza/genética , Fotossíntese , Tolerância ao Sal/genética , Solo , Água
5.
Plant Physiol ; 160(2): 846-67, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22837360

RESUMO

Drought stress affects cereals especially during the reproductive stage. The maize (Zea mays) drought transcriptome was studied using RNA-Seq analysis to compare drought-treated and well-watered fertilized ovary and basal leaf meristem tissue. More drought-responsive genes responded in the ovary compared with the leaf meristem. Gene Ontology enrichment analysis revealed a massive decrease in transcript abundance of cell division and cell cycle genes in the drought-stressed ovary only. Among Gene Ontology categories related to carbohydrate metabolism, changes in starch and Suc metabolism-related genes occurred in the ovary, consistent with a decrease in starch levels, and in Suc transporter function, with no comparable changes occurring in the leaf meristem. Abscisic acid (ABA)-related processes responded positively, but only in the ovaries. Related responses suggested the operation of low glucose sensing in drought-stressed ovaries. The data are discussed in the context of the susceptibility of maize kernel to drought stress leading to embryo abortion and the relative robustness of dividing vegetative tissue taken at the same time from the same plant subjected to the same conditions. Our working hypothesis involves signaling events associated with increased ABA levels, decreased glucose levels, disruption of ABA/sugar signaling, activation of programmed cell death/senescence through repression of a phospholipase C-mediated signaling pathway, and arrest of the cell cycle in the stressed ovary at 1 d after pollination. Increased invertase levels in the stressed leaf meristem, on the other hand, resulted in that tissue maintaining hexose levels at an "unstressed" level, and at lower ABA levels, which was correlated with successful resistance to drought stress.


Assuntos
Secas , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Folhas de Planta/metabolismo , Zea mays/genética , Ácido Abscísico/farmacologia , Adaptação Fisiológica , Pontos de Checagem do Ciclo Celular , Morte Celular , Divisão Celular , Flores/genética , Flores/fisiologia , Genes de Plantas , Glucose/metabolismo , Meristema/genética , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Sítios de Splice de RNA , RNA de Plantas/genética , Sementes/genética , Sementes/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Estresse Fisiológico , Transcriptoma , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Zea mays/metabolismo , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...