Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 12(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957509

RESUMO

The selection of dressing is crucial for the wound healing process. Traditional dressings protect against contamination and mechanical damage of an injured tissue. Alternatives for standard dressings are regenerating systems containing a polymer with an incorporated active compound. The aim of this research was to obtain a biodegradable wound dressing releasing propolis in a controlled manner throughout the healing process. Dressings were obtained by electrospinning a poly(lactide-co-glycolide) copolymer (PLGA) and propolis solution. The experiment consisted of in vitro drug release studies and in vivo macroscopic treatment evaluation. In in vitro studies released active compounds, the morphology of nonwovens, chemical composition changes of polymeric material during degradation process, weight loss and water absorption were determined. For in vivo research, four domestic pigs, were used. The 21-day experiment consisted of observation of healing third-degree burn wounds supplied with PLGA 85/15 nonwovens without active compound, with 5 wt % and 10 wt % of propolis, and wounds rinsed with NaCl. The in vitro experiment showed that controlling the molar ratio of lactidyl to glycolidyl units in the PLGA copolymer gives the opportunity to change the release profile of propolis from the nonwoven. The in vivo research showed that PLGA nonwovens with propolis may be a promising dressing material in the treatment of severe burn wounds.

2.
Oxid Med Cell Longev ; 2020: 3675603, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685093

RESUMO

The evolution of the paramagnetic center system in blood during the healing of skin burn wounds dressed with a biodegradable apitherapeutic nanofiber dressing was examined. The aim of this study was to determine the changes in paramagnetic centers in blood during the influence of apitherapeutic nanofiber dressings on the healing process. The blood samples were tested before burn infliction (day 0) and, respectively, on the 10th and 21st days of the experiment. Paramagnetic centers in the blood of the pig used as the model animal were examined with an X-band (9.3 GHz) electron paramagnetic resonance spectroscopy. The EPR spectra were measured with Bruker spectrometer at 230 K with a modulation frequency of 100 kHz. The EPR lines of the high spin Fe3+ in methemoglobin, high spin Fe3+ in transferrin, Cu2+ in ceruloplasmin, and free radicals were observed in the multicomponent spectra of blood. For the application of the apitherapeutic nanofiber dressing, the amplitudes of the EPR signals of Fe3+ in methemoglobin were similar up to 10 days. For the experiment with the apitherapeutic formulation, the heights of EPR signals of Fe3+ in transferrin were lower after 10 days and 21 days of therapy, compared to day 0. For the application of the apitherapeutic formulation the signals of Cu2+ in ceruloplasmin and free radicals, strongly decreased after 10 days of therapy, and after 21 days it increased to the initial values characteristic for day 0. The apitherapeutic formulation caused that after 21 days the EPR spectrum of Cu2+ in ceruloplasmin and free radicals was considerably high. The apitherapeutic formulation interaction after 10 days and after 21 days of therapy resulted in the low EPR lines of Fe3+ in methemoglobin. EPR spectra of blood may be useful for presentation of the changes in its paramagnetic centers during the healing process of the burn wounds.


Assuntos
Bandagens/normas , Queimaduras/tratamento farmacológico , Nanofibras/uso terapêutico , Própole/uso terapêutico , Animais , Humanos , Própole/farmacologia , Suínos
3.
J Clin Med ; 8(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698733

RESUMO

(1) Background: The healing properties of cannabidiol (CBD) have been known for centuries. In this study, we aimed to evaluate the efficiency of the myorelaxant effect of CBD after the transdermal application in patients with myofascial pain. (2) Methods: The Polish version of the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD Ia and Ib) was used. A total of 60 patients were enrolled in the study and were randomly divided into two groups: Group1 and Group2. The average age in Group1 was 23.2 years (SD) = 1.6 years) and in Group2, it was 22.6 years (SD = 1.86). This was a parallel and double-blind trial. Group1 received CBD formulation, whereas Group2 received placebo formulation for topical use. The masseter muscle activity was measured on days 0 and 14, with surface electromyography (sEMG) (Neurobit Optima 4, Neurobit System, Gdynia, Poland). Pain intensity in VAS (Visual Analogue Scale) was measured on days 0 and 14. (3) Results: in Group1, the sEMG masseter activity significantly decreased (11% in the right and 12.6% in the left masseter muscles). In Group2, the sEMG masseter activity was recorded as 0.23% in the right and 3.3% in the left masseter muscles. Pain intensity in VAS scale was significantly decreased in Group1: 70.2% compared to Group2: 9.81% reduction. Patients were asked to apply formulation twice a day for a period of 14 days. (4) Conclusion: The application of CBD formulation over masseter muscle reduced the activity of masseter muscles and improved the condition of masticatory muscles in patients with myofascial pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...