Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 4(1): 19-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34992297

RESUMO

The enteric pathogen Clostridioides difficile (Cd) is responsible for a toxin-mediated infection that causes more than 200,000 recorded hospitalizations and 13,000 deaths in the United States every year1. However, Cd can colonize the gut in the absence of disease symptoms. Prevalence of asymptomatic colonization by toxigenic Cd in healthy populations is high; asymptomatic carriers are at increased risk of infection compared to noncolonized individuals and may be a reservoir for transmission of Cd infection2,3. Elucidating the molecular mechanisms by which Cd persists in the absence of disease is necessary for understanding pathogenesis and developing refined therapeutic strategies. Here, we show with gut microbiome metatranscriptomic analysis that mice recalcitrant to Cd infection and inflammation exhibit increased community-wide expression of arginine and ornithine metabolic pathways. To query Cd metabolism specifically, we leverage RNA sequencing in gnotobiotic mice infected with two wild-type strains (630 and R20291) and isogenic toxin-deficient mutants of these strains to differentiate inflammation-dependent versus -independent transcriptional states. A single operon encoding oxidative ornithine degradation is consistently upregulated across non-toxigenic Cd strains. Combining untargeted and targeted metabolomics with bacterial and host genetics, we demonstrate that both diet- and host-derived sources of ornithine provide a competitive advantage to Cd, suggesting a mechanism for Cd persistence within a non-inflammatory, healthy gut.


Assuntos
Clostridioides difficile/fisiologia , Infecções por Clostridium/metabolismo , Infecções por Clostridium/microbiologia , Interações Hospedeiro-Patógeno , Ornitina/metabolismo , Oxirredução , Aminoácidos/metabolismo , Animais , Metabolismo Energético , Microbioma Gastrointestinal , Humanos , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Camundongos , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo
2.
Nat Commun ; 10(1): 2012, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043597

RESUMO

Small intestinal bacterial overgrowth (SIBO) has been implicated in symptoms associated with functional gastrointestinal disorders (FGIDs), though mechanisms remain poorly defined and treatment involves non-specific antibiotics. Here we show that SIBO based on duodenal aspirate culture reflects an overgrowth of anaerobes, does not correspond with patient symptoms, and may be a result of dietary preferences. Small intestinal microbial composition, on the other hand, is significantly altered in symptomatic patients and does not correspond with aspirate culture results. In a pilot interventional study we found that switching from a high fiber diet to a low fiber, high simple sugar diet triggered FGID-related symptoms and decreased small intestinal microbial diversity while increasing small intestinal permeability. Our findings demonstrate that characterizing small intestinal microbiomes in patients with gastrointestinal symptoms may allow a more targeted antibacterial or a diet-based approach to treatment.


Assuntos
Disbiose/microbiologia , Gastroenteropatias/microbiologia , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Intestino Delgado/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos , DNA Bacteriano/isolamento & purificação , Fibras na Dieta/administração & dosagem , Açúcares da Dieta/efeitos adversos , Disbiose/dietoterapia , Disbiose/tratamento farmacológico , Disbiose/fisiopatologia , Feminino , Gastroenteropatias/dietoterapia , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/fisiopatologia , Voluntários Saudáveis , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiopatologia , Intestino Delgado/metabolismo , Intestino Delgado/fisiopatologia , Masculino , Pessoa de Meia-Idade , Permeabilidade , Projetos Piloto , Adulto Jovem
3.
Sci Transl Med ; 10(464)2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355801

RESUMO

The gut microbiota plays a critical role in pathogen defense. Studies using antibiotic-treated mice reveal mechanisms that increase susceptibility to Clostridioides difficile infection (CDI), but risk factors associated with CDI in humans extend beyond antibiotic use. Here, we studied the dysbiotic gut microbiota of a subset of patients with diarrhea and modeled the gut microbiota of these patients by fecal transplantation into germ-free mice. When challenged with C. difficile, the germ-free mice transplanted with fecal samples from patients with dysbiotic microbial communities showed increased gut amino acid concentrations and greater susceptibility to CDI. A C. difficile mutant that was unable to use proline as an energy source was unable to robustly infect germ-free mice transplanted with a dysbiotic or healthy human gut microbiota. Prophylactic dietary intervention using a low-proline or low-protein diet in germ-free mice colonized by a dysbiotic human gut microbiota resulted in decreased expansion of wild-type C. difficile after challenge, suggesting that amino acid availability might be important for CDI. Furthermore, a prophylactic fecal microbiota transplant in mice with dysbiosis reduced proline availability and protected the mice from CDI. Last, we identified clinical risk factors that could potentially predict gut microbial dysbiosis and thus greater susceptibility to CDI in a retrospective cohort of patients with diarrhea. Identifying at-risk individuals and reducing their susceptibility to CDI through gut microbiota-targeted therapies could be a new approach to preventing C. difficile infection in susceptible patients.


Assuntos
Aminoácidos/metabolismo , Clostridioides difficile/fisiologia , Diarreia/microbiologia , Disbiose/microbiologia , Microbioma Gastrointestinal , Adolescente , Adulto , Idoso , Animais , Infecções por Clostridium/microbiologia , Diarreia/complicações , Suscetibilidade a Doenças , Disbiose/complicações , Transplante de Microbiota Fecal , Feminino , Vida Livre de Germes , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
4.
Cell Host Microbe ; 23(6): 775-785.e5, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29902441

RESUMO

Tryptamine, a tryptophan-derived monoamine similar to 5-hydroxytryptamine (5-HT), is produced by gut bacteria and is abundant in human and rodent feces. However, the physiologic effect of tryptamine in the gastrointestinal (GI) tract remains unknown. Here, we show that the biological effects of tryptamine are mediated through the 5-HT4 receptor (5-HT4R), a G-protein-coupled receptor (GPCR) uniquely expressed in the colonic epithelium. Tryptamine increases both ionic flux across the colonic epithelium and fluid secretion in colonoids from germ-free (GF) and humanized (ex-GF colonized with human stool) mice, consistent with increased intestinal secretion. The secretory effect of tryptamine is dependent on 5-HT4R activation and is blocked by 5-HT4R antagonist and absent in 5-HT4R-/- mice. GF mice colonized by Bacteroides thetaiotaomicron engineered to produce tryptamine exhibit accelerated GI transit. Our study demonstrates an aspect of host physiology under control of a bacterial metabolite that can be exploited as a therapeutic modality. VIDEO ABSTRACT.


Assuntos
Colo/fisiologia , Microbioma Gastrointestinal/fisiologia , Secreções Intestinais , Receptores 5-HT4 de Serotonina/metabolismo , Triptaminas/metabolismo , Animais , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/fisiologia , Colo/microbiologia , Epitélio/efeitos dos fármacos , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Cultura Primária de Células , Fatores Sexuais , Organismos Livres de Patógenos Específicos
5.
Transl Res ; 165(6): 667-76, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25234352

RESUMO

Recent studies suggest that low vitamin D-binding protein (VDBP aka group-specific complement or Gc) concentrations may be linked with inflammatory-mediated conditions, including asthma, chronic obstructive pulmonary disease, and cancer. However, these studies may be confounded by substantial racial and ethnic or genetic differences. The purpose of this study was to test the hypothesis that circulating VDBP concentrations are significantly associated with genetic ancestry. We used a validated high-performance liquid chromatography tandem mass spectrometry assay of 25-hydroxyvitamin D3 and its downstream metabolite 24,25-dihydroxyvitamin D3. VDBP concentrations (milligrams per liter) were measured in duplicate using a commercial enzyme-linked immunosorbent assay among healthy African American (n = 56) and Caucasian American (n = 60) participants. Ancestry informative markers across the genome were used to estimate individual genetic ancestry proportions, designed to robustly distinguish between West African and European ancestry. Genotype-defined Gc isoforms were defined using rs7041 and rs4588 combination groups. VDBP concentration was correlated with both Gc isoform (r = 0.93, P < 0.001) and West African genetic ancestry (r = -0.66, P < 0.001). In the final model, Gc isoform, the catabolic ratio of serum vitamin D, oral contraceptive use, and body mass index remained significantly associated with VDBP concentration, after adjustment for genetic ancestry. Failure to adjust for Gc isoform may lead to spurious associations in studies of VDBP concentration and disease risk, particularly when the condition of interest may also be associated with genetic ancestry. The higher circulating VDBP concentrations and higher vitamin D catabolic rate among Caucasian Americans observed here appear to be consistent with lower bone mineral density and racial and ethnic differences in vitamin D-inducing cytokines.


Assuntos
Proteína de Ligação a Vitamina D/sangue , Adulto , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Espectrometria de Massas em Tandem , Adulto Jovem
6.
Mol Microbiol ; 69(4): 794-808, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18554329

RESUMO

Conjugal DNA transfer in Mycobacterium smegmatis occurs by a mechanism distinct from plasmid-mediated DNA transfer. Previously, we had shown that the secretory apparatus, ESX-1, negatively regulated DNA transfer from the donor strain; ESX-1 donor mutants are hyper-conjugative. Here, we describe a genome-wide transposon mutagenesis screen to isolate recipient mutants. Surprisingly, we find that a majority of insertions map within the esx-1 locus, which encodes the secretory apparatus. Thus, in contrast to its role in donor function, ESX-1 is essential for recipient function; recipient ESX-1 mutants are hypo-conjugative. In addition to esx-1 genes, our screen identifies novel non-esx-1 loci in the M. smegmatis genome that are required for both DNA transfer and ESX-1 activity. DNA transfer therefore provides a simple molecular genetic assay to characterize ESX-1, which, in Mycobacterium tuberculosis, is necessary for full virulence. These findings reinforce the functional intertwining of DNA transfer and ESX-1 secretion, first described in the M. smegmatis donor. Moreover, our observation that ESX-1 has such diametrically opposed effects on transfer in the donor and recipient, forces us to consider how proteins secreted by the ESX-1 apparatus can function so as to modulate two seemingly disparate processes, M. smegmatis DNA transfer and M. tuberculosis virulence.


Assuntos
Proteínas de Bactérias/genética , Conjugação Genética , DNA/metabolismo , Genes Bacterianos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Transporte Biológico/genética , Mutagênese Insercional , Mycobacterium smegmatis/patogenicidade , Óperon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...