Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 107(6): 1667-1679, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29462633

RESUMO

The classic fixed-dose combination (FDC) of 4 tuberculosis drugs, namely rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA), and ethambutol dihydrochloride (EDH) has the twin issues of physical stability and RIF cross-reaction in the 4-FDC. The major reason for these quality issues is the interaction between RIF and INH to yield isonicotinyl hydrazone in drug tablets. Pharmaceutical cocrystals of INH with caffeic acid (CFA) (PZA + EDH + RIF + INH-CFA cocrystal) and vanillic acid (VLA) (PZA + EDH + RIF + INH-VLA cocrystal) are able to stabilize the FDC formulation compared with the reference batch (PZA + EDH + RIF + INH). Stability studies under accelerated humidity and temperature stress conditions of 40°C and 75% relative humidity showed that the physical stability of the cocrystal formulation was superior by powder X-ray diffraction and scanning electron microscopy analysis, and chemical purity was analyzed by high-performance liquid chromatography. Changes in the composition and structure were monitored on samples drawn at 7, 15, 22, and 30 days of storage. FDC-INH-CFA cocrystal batch exhibited greater stability compared with FDC-INH-VLA cocrystal and FDC reference drug batches. The superior stability of INH-CFA cocrystal is attributed to the presence of stronger hydrogen bonds and cyclic O-H⋯O synthon in the crystal structure.


Assuntos
Antituberculosos/química , Ácidos Cafeicos/química , Etambutol/química , Isoniazida/química , Pirazinamida/química , Rifampina/química , Ácido Vanílico/química , Cristalização/métodos , Combinação de Medicamentos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Humanos , Modelos Moleculares , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...