Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(1): 86-97.e10, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36528024

RESUMO

Color variation is a frequent evolutionary substrate for camouflage in small mammals, but the underlying genetics and evolutionary forces that drive color variation in natural populations of large mammals are mostly unexplained. The American black bear, Ursus americanus (U. americanus), exhibits a range of colors including the cinnamon morph, which has a similar color to the brown bear, U. arctos, and is found at high frequency in the American southwest. Reflectance and chemical melanin measurements showed little distinction between U. arctos and cinnamon U. americanus individuals. We used a genome-wide association for hair color as a quantitative trait in 151 U. americanus individuals and identified a single major locus (p < 10-13). Additional genomic and functional studies identified a missense alteration (R153C) in Tyrosinase-related protein 1 (TYRP1) that likely affects binding of the zinc cofactor, impairs protein localization, and results in decreased pigment production. Population genetic analyses and demographic modeling indicated that the R153C variant arose 9.36 kya in a southwestern population where it likely provided a selective advantage, spreading both northwards and eastwards by gene flow. A different TYRP1 allele, R114C, contributes to the characteristic brown color of U. arctos but is not fixed across the range.


Assuntos
Ursidae , Animais , Fluxo Gênico , Variação Genética , Genoma , Estudo de Associação Genômica Ampla , Ursidae/genética
2.
PLoS Genet ; 17(1): e1009195, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411788

RESUMO

Dravet syndrome (DS) is a developmental and epileptic encephalopathy that results from mutations in the Nav1.1 sodium channel encoded by SCN1A. Most known DS-causing mutations are in coding regions of SCN1A, but we recently identified several disease-associated SCN1A mutations in intron 20 that are within or near to a cryptic and evolutionarily conserved "poison" exon, 20N, whose inclusion is predicted to lead to transcript degradation. However, it is not clear how these intron 20 variants alter SCN1A expression or DS pathophysiology in an organismal context, nor is it clear how exon 20N is regulated in a tissue-specific and developmental context. We address those questions here by generating an animal model of our index case, NM_006920.4(SCN1A):c.3969+2451G>C, using gene editing to create the orthologous mutation in laboratory mice. Scn1a heterozygous knock-in (+/KI) mice exhibited an ~50% reduction in brain Scn1a mRNA and Nav1.1 protein levels, together with characteristics observed in other DS mouse models, including premature mortality, seizures, and hyperactivity. In brain tissue from adult Scn1a +/+ animals, quantitative RT-PCR assays indicated that ~1% of Scn1a mRNA included exon 20N, while brain tissue from Scn1a +/KI mice exhibited an ~5-fold increase in the extent of exon 20N inclusion. We investigated the extent of exon 20N inclusion in brain during normal fetal development in RNA-seq data and discovered that levels of inclusion were ~70% at E14.5, declining progressively to ~10% postnatally. A similar pattern exists for the homologous sodium channel Nav1.6, encoded by Scn8a. For both genes, there is an inverse relationship between the level of functional transcript and the extent of poison exon inclusion. Taken together, our findings suggest that poison exon usage by Scn1a and Scn8a is a strategy to regulate channel expression during normal brain development, and that mutations recapitulating a fetal-like pattern of splicing cause reduced channel expression and epileptic encephalopathy.


Assuntos
Epilepsias Mioclônicas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Epilepsias Mioclônicas/patologia , Éxons/genética , Regulação da Expressão Gênica/genética , Técnicas de Introdução de Genes , Humanos , Íntrons/genética , Camundongos , Mutação/genética , Especificidade de Órgãos/genética , RNA-Seq
3.
BMC Bioinformatics ; 18(1): 586, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29281959

RESUMO

BACKGROUND: Genotyping-by-sequencing (GBS), a method to identify genetic variants and quickly genotype samples, reduces genome complexity by using restriction enzymes to divide the genome into fragments whose ends are sequenced on short-read sequencing platforms. While cost-effective, this method produces extensive missing data and requires complex bioinformatics analysis. GBS is most commonly used on crop plant genomes, and because crop plants have highly variable ploidy and repeat content, the performance of GBS analysis software can vary by target organism. Here we focus our analysis on soybean, a polyploid crop with a highly duplicated genome, relatively little public GBS data and few dedicated tools. RESULTS: We compared the performance of five GBS pipelines using low-coverage Illumina sequence data from three soybean populations. To address issues identified with existing methods, we developed GB-eaSy, a GBS bioinformatics workflow that incorporates widely used genomics tools, parallelization and automation to increase the accuracy and accessibility of GBS data analysis. Compared to other GBS pipelines, GB-eaSy rapidly and accurately identified the greatest number of SNPs, with SNP calls closely concordant with whole-genome sequencing of selected lines. Across all five GBS analysis platforms, SNP calls showed unexpectedly low convergence but generally high accuracy, indicating that the workflows arrived at largely complementary sets of valid SNP calls on the low-coverage data analyzed. CONCLUSIONS: We show that GB-eaSy is approximately as good as, or better than, other leading software solutions in the accuracy, yield and missing data fraction of variant calling, as tested on low-coverage genomic data from soybean. It also performs well relative to other solutions in terms of the run time and disk space required. In addition, GB-eaSy is built from existing open-source, modular software packages that are regularly updated and commonly used, making it straightforward to install and maintain. While GB-eaSy outperformed other individual methods on the datasets analyzed, our findings suggest that a comprehensive approach integrating the results from multiple GBS bioinformatics pipelines may be the optimal strategy to obtain the largest, most highly accurate SNP yield possible from low-coverage polyploid sequence data.


Assuntos
Produtos Agrícolas/genética , Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Fluxo de Trabalho , Genoma de Planta , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Glycine max/genética , Sequenciamento Completo do Genoma
4.
Development ; 133(17): 3461-71, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16908630

RESUMO

The C. elegans PUF and FBF proteins regulate various aspects of germline development by selectively binding to the 3' untranslated region of their target mRNAs and repressing translation. Here, we show that puf-8, fbf-1 and fbf-2 also act in the soma where they negatively regulate vulvaI development. Loss-of-function mutations in puf-8 cause ectopic vulval differentiation when combined with mutations in negative regulators of the EGFR/RAS/MAPK pathway and suppress the vulvaless phenotype caused by mutations that reduce EGFR/RAS/MAPK signalling. PUF-8 acts cell-autonomously in the vulval cells to limit their temporal competence to respond to the extrinsic patterning signals. fbf-1 and fbf-2, however, redundantly inhibit primary vulval cell fate specification in two distinct pathways acting in the soma and in the germline. The FBFs thereby ensure that the inductive signal selects only one vulval precursor cell for the primary cell fate. Thus, translational repressors regulate various aspects of vulval cell fate specification, and they may play a conserved role in modulating signal transduction during animal development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Vulva/embriologia , Animais , Padronização Corporal , Caenorhabditis elegans/metabolismo , Clonagem Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Fenótipo , Reação em Cadeia da Polimerase , Interferência de RNA , Transdução de Sinais
5.
Development ; 130(12): 2567-77, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12736202

RESUMO

In C. elegans, the RAS/MAPK pathway is used in different tissues to regulate various cell fate decisions. Several positive and negative regulators tightly control the activity of the RAS/MAPK pathway at different steps. We demonstrate a link between a G-protein-coupled receptor signalling pathway and the RAS/MAPK cascade. SRA-13, a member of the SRA family of chemosensory receptors, negatively regulates RAS/MAPK signalling during vulval induction and the olfaction of volatile attractants. Epistasis analysis indicates that SRA-13 inhibits the RAS/MAPK pathway at the level or upstream of MAPK. In both tissues, the vulval precursor cells and the chemosensory neurones, SRA-13 acts through the GPA-5 Galpha protein subunit, suggesting a common mechanism of crosstalk. Moreover, we find that vulval induction is repressed by food withdrawal during larval development and that SRA-13 activity is required for the suppression of vulval induction in response to food starvation. Thus, SRA-13 may serve to adapt the activity of the RAS/MAPK pathway to environmental conditions.


Assuntos
Caenorhabditis elegans/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Olfato/fisiologia , Vulva/embriologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Indução Embrionária/fisiologia , Feminino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Neurônios/fisiologia , Filogenia , Análise de Sequência de DNA , Vulva/metabolismo , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...