Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Pollut ; 357: 124427, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914199

RESUMO

The occurrence and characteristics of plastic debris in aquatic and terrestrial environments have been extensively studied. However, limited information exists on the properties and dynamic behavior of plastic-associated biofilms in the environment. In this study, we collected plastic samples from an inland river system in Mongolia and extracted biofilms to uncover their characteristics using spectroscopic, isotopic, and thermogravimetric techniques. Mixtures of organic and mineral particles were detected in the extracted biofilms, revealing plastic as a carrier for exogenous substances, including contaminants, in the river ecosystem. Thermogravimetric analysis (TGA) indicated the predominant contribution of minerals primarily comprising aluminosilicate and calcite, representing approximately 80 wt% of the biofilms. Differential thermal analysis (DTA) coupled with Fourier transform infrared (FTIR) spectrometry operated at 25°C-600 °C enabled the detection of gaseous decomposition products, such as CO2, H2O, CO, and functional groups (O-H, C-H, C-O, CO, CC, and C-C), released from biopolymers in the extracted biofilms. Dehydration, dehydroxylation, and decarboxylation reactions explain the thermal properties of biofilms. The stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of the biofilms demonstrated variable signatures ranging from -24.1‰ to -27.0‰ and 3.1‰-12.3‰, respectively. A significant difference in the δ13C value (p < 0.05) among the upstream, middle, and downstream research sites could be characterized by available organic carbon sources in the river environment, depending on the research sites. This study provides insights into the characteristics and environmental behavior of biofilms which are useful to elucidate the impact of plastic-associated biofilms on organic matter and material cycling in aquatic ecosystems.

2.
Ecotoxicol Environ Saf ; 261: 115100, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285671

RESUMO

The widespread distribution of plastic debris in riverine environment is one of the major concerns of environmental pollution because of its potential impact on the aquatic ecosystem. In this study, we investigated the accumulation of metal(loid)s on polystyrene foam (PSF) plastics collected from the floodplain of the Tuul River of Mongolia. The metal(loid)s sorbed on plastics were extracted from the collected PSF via sonication after peroxide oxidation. The size-dependent association of metal(loid)s with plastics indicates that PSFs act as vectors for pollutants in the urban river environment. The mean concentrations of metal(loid)s (i.e., B, Cr, Cu, Na, and Pb) indicate a higher accumulation of the metal(loid)s on meso-sized PSFs compared with macro- and micro-sized PSFs. In addition, the images from scanning electron microscopy (SEM) indicated not only the degraded surface of plastics showing fractures, holes, and pits but also the adhered mineral particles and microorganisms on the PSFs. The interaction of metal(loid)s with plastics was probably facilitated by the physical and chemical properties of altered surface of plastics through photodegradation, followed by an increase in surface area by size reduction and/or biofilm development in the aquatic environment. The enrichment ratio (ER) of metals on PSF samples suggested the continuous accumulation of heavy metals on plastics. Our results demonstrate that the widespread plastic debris could be a carrier of hazardous chemicals in the environment. Considering that the negative impacts of plastic debris on environmental health are major concerns to be addressed, the fate and behavior of the plastics especially their interaction with pollutants in aquatic environments should be further studied.


Assuntos
Poluentes Ambientais , Metais Pesados , Plásticos , Ecossistema , Rios/química , Mongólia , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poliestirenos/análise
3.
Environ Sci Pollut Res Int ; 30(31): 77226-77237, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37249781

RESUMO

The global survey for the presence of microplastics (MPs) in aquatic environments has attracted widespread scientific attention over the past decade. However, evaluating the composition and characteristics of these anthropogenic debris using highly sensitive techniques is still under consideration. This study demonstrates a multidimensional analytical approach, including isotopic and thermogravimetric analyses to evaluate characteristics and behavior of MPs in the environment. The MP samples were collected in two contrasting coastal areas of Japan. The stable carbon isotope (δ13C) ratios of field-collected polyethylene (PE), polypropylene (PP), and polystyrene (PS) MPs ranged from -25.6‰ to -31.4‰, -23.4‰ to -30.9‰, and -27.3‰ to -28.6‰, respectively. The detected isotope signatures were similar to those of commercial products. In addition, the differences in δ13C signature were determined between MPs with different colors. Through thermal analysis, the single-step endothermic process was observed for environmental PE and PS-MPs. Patterns in the thermograms revealed dissimilarities in degradability among the PE-MPs with different colors. The results reveal that degradation (aging) may play a significant role in the behavior and characteristics of MP debris in the aquatic environment. The present study provides fundamental data of environmental MPs from the isotopic and thermogravimetric aspects and highlights the usefulness of the approach for advances in MP research.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/análise , Japão , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polietileno/análise , Poliestirenos/análise
4.
Sci Total Environ ; 849: 157758, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35926621

RESUMO

Plastics are one of the ubiquitous and artificial types of substrates for microbial colonization and biofilm development in the aquatic environment. Characterizing plastic-associated biofilms is key to the better understanding of organic material and mineral cycling in the "Plastisphere"-the thin layer of microbial life on plastics. In this study, we propose a new method to extract biofilms from environmental plastics, in order to evaluate the properties of biofilm-derived organic matter through stable carbon (δ13C) and nitrogen (δ15N) isotope signatures and their interactions with radionuclides especially radiocesium (137Cs). The extraction method is simple and cost-effective, requiring only an ultrasonic bath, disposable plastic syringes, and a freeze drier. After ultrasound-assisted separation from the plastics, biofilm samples were successfully collected via a sequence of syringe treatments, with less contamination from plastics and other mineral particles. Effective removal of small microplastics from the experimental suspension was satisfactorily achieved using the method with syringe treatments. Biofilm-derived organic matter samples (14.5-65.4 mg) from four river mouths in Japan showed 137Cs activity concentrations of <75 to 820 Bq·kg-1 biofilm (dw), providing evidence that environmental plastics, mediated by developed biofilms, serve as a carrier for 137Cs in the coastal riverine environment. Significant differences in the δ13C and δ15N signatures were also obtained for the biofilms, indicating the different sources, pathways, and development processes of biofilms on plastics. We demonstrate here a straightforward method for extracting biofilms from environmental plastics; the results obtained with this method could provide useful insights into the plastic-associated nutrient cycling in the environment.


Assuntos
Plásticos , Seringas , Biofilmes , Carbono , Radioisótopos de Césio , Microplásticos , Nitrogênio , Plásticos/análise
5.
Environ Res ; 212(Pt B): 113329, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35472460

RESUMO

Microplastic (MP) surfaces are common sites for microbial colonization and promote biofilm formation in aquatic environments, resulting in changes to the surface properties of MPs and their interaction with pollutants. Although the diversity of microbial communities adhering to MPs has been well documented in aquatic environments, surface changes in MPs due to microbial colonization are still poorly understood. In this study, we aimed to evaluate the variations in the chemical structure and components of biofilms on the surface of polystyrene microplastics (PS-MPs) collected from the shore of the Tuul River in Mongolia, using micro-Fourier transform infrared (micro-FTIR) spectroscopy. We applied a spectral subtraction approach, and the differences in spectra between peroxide-treated and untreated PS-MP particles enabled us to obtain the structural features of biofilms that developed on the plastic surface. In addition, the surface photooxidation status of the sampled PS-MPs was calculated from the subtracted spectra of peroxide-treated and pristine PS-MPs. Various functional groups of N-containing organic substances from bacterial and fungal communities were detected in the obtained biofilm spectra. Based on the spectral characteristics, biofilm spectra were classified into four groups by applying principal component analysis (PCA). A wide range of carbonyl indices (CIs: 0.00-1.40) was found in the subtracted spectra between peroxide-treated and pristine PS-MPs, revealing that different levels of surface oxidation progressed by physical influences such as solar radiation and freeze-thaw cycles. Furthermore, lignocellulose and silicate were found on the PS-MP surface as allochthonous attachments. Considering the variation in residence time of PS-MPs, they attract plant residues and mineral particles through the development of biofilms and travel together in the river environment. Given that the dynamic behavior of MPs can be greatly affected by changes in their surfaces, further studies are needed to emphasize their link to organic matter dynamics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Biofilmes , Mongólia , Peróxidos/análise , Plásticos/análise , Poliestirenos , Rios , Poluentes Químicos da Água/análise
6.
Environ Pollut ; 260: 113979, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32000021

RESUMO

Foamed plastic debris in aquatic systems has become one of the emerging global contaminants. In this study, the behavior of polystyrene foam (PSF) and microplastics (MPs) adhered on the PSFs were investigated on the Tuul River shore in Ulaanbaatar, the capital city of Mongolia. The micro-sized (<5 mm) PSF, which was the dominant PSF over 600 pieces in 100 m2, have accumulated along the shoreline of Tuul River. Carbonyl index (CI) was calculated to evaluate the surface oxidation of macro-sized (20-100 mm), meso-sized (5-20 mm), and micro-sized PSFs and confirm the relative aging depending on photodegradation. CI ranged from 0.00 to 1.09 in the sampled PSFs, whereby the degraded PSFs with high CI were distributed on the shore of downstream of sewer drainage. Micro-sized PSFs showed a wide range of CI and a relatively high average value of CI as compared to those of meso- and macro-sized PSFs. Most of PSFs aggregated with MPs and the adhered MPs have been ubiquitously detected from the surface of PSFs. Adhered micro-sized plastics explored from the surface of PSFs with various sizes, except for mega-sized (>100 mm) PSF, ranged from 5 to 141 items per piece of PSF fragment. The aggregates of PSFs and MPs were common status of PSFs during their transportation. The present findings, which indicated a high concentration of adhered MPs, raise an environmental concern about the widespread aquatic plastic pollution.


Assuntos
Monitoramento Ambiental , Plásticos , Poluentes Químicos da Água , Cidades , Mongólia , Poliestirenos/análise , Rios/química
7.
Environ Sci Pollut Res Int ; 26(14): 14059-14072, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30852749

RESUMO

Plastic pollution in aquatic environments is one of the most fatal environmental issues in the world. Although the distribution of plastic debris in the sea and at coasts has been addressed, the transportation of plastics through a river system is unclear but important. The distribution of plastic debris in the Selenga River system is responsible for the environmental pollution of Lake Baikal. Twelve sampling sites along the river shore of the Selenga River system have been surveyed considering the industrial activity and population density. The number of plastics significantly correlates with the population density. The higher the number of plastics is, the smaller is the average size. The size fractions of foam and film plastics show a significant relationship, suggesting that the plastic debris fragmented on-site on the river shores. The most abundant plastic debris is polystyrene foam (PSF), which is usually used for construction and packaging. Plastic debris occurs due to insufficient plastic waste management. Its distribution is affected by seasonal changes of the water level and flow rate of tributaries. Furthermore, the fragmentation of plastic debris is related to temperature changes associated with freeze and thaw cycles, solar radiation, and mechanical abrasion. Smaller microplastics with microscopic sizes were detected in PSF debris. Based on micro-Fourier transform infrared spectroscopy, these microplastics are polystyrene and polyethylene. This study proves that invisible and visible microplastics are transported together.


Assuntos
Plásticos/análise , Resíduos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Mongólia , Polietileno/análise , Poliestirenos/análise , Rios , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...