Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940638

RESUMO

Binary metal hydrides can act as low-temperature reducing agents for complex oxides in the solid state, facilitating the synthesis of anion-deficient oxide or oxyhydride phases. The reaction of LaSrCoRuO6, with CaH2 in a sealed tube yields the face-centered cubic phase LaSrCoRuO3.2H1.9. The reaction with LiH under similar conditions converts LaSrCoRuO6 to a mixture of tetragonal LaSrCoRuO4.8H1.2 and cubic LaSrCoRuO3.3H2.13. The formation of the LaSrCoRuOxHy oxyhydride phases proceeds directly from the parent oxide, with no evidence for anion-deficient LaSrCoRuO6-x intermediates, in contrast with many other topochemically synthesized transition-metal oxyhydrides. However, the reaction between LaSrCoRuO6 and LiH under flowing argon yields a mixture of LaSrCoRuO5 and the infinite layer phase LaSrCoRuO4. The change to all-oxide products when reactions are performed under flowing argon is attributed to the lower hydrogen partial pressure under these conditions. The implications for the reaction mechanism of these topochemical transformations is discussed along with the role of the hydrogen partial pressure in oxyhydride synthesis. Magnetization measurements indicate the LaSrCoRuOxHy phases exhibit local moments on Co and Ru centers, which are coupled antiferromagnetically. In contrast, LaSrCoRuO4 exhibits ferromagnetic behavior with a Curie temperature above 350 K, which can be rationalized on the basis of superexchange coupling between the Co1+ and Ru2+ centers.

2.
Angew Chem Int Ed Engl ; 63(6): e202313067, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38085493

RESUMO

Complex transition-metal oxides exhibit a wide variety of chemical and physical properties which are a strong function the local electronic states of the transition-metal centres, as determined by a combination of metal oxidation state and local coordination environment. Topochemical reduction of the double perovskite oxide, LaSrCoRuO6 , using Zr, yields LaSrCoRuO5 . This reduced phase contains an ordered array of apex-linked square-based pyramidal Ru3+ O5 , square-planar Co1+ O4 and octahedral Co3+ O6 units, consistent with the coordination-geometry driven disproportionation of Co2+ . Coordination-geometry driven disproportionation of d7 transition-metal cations (e.g. Rh2+ , Pd3+ , Pt3+ ) is common in complex oxides containing 4d and 5d metals. However, the weak ligand field experienced by a 3d transition-metal such as cobalt leads to the expectation that d7+ Co2+ should be stable to disproportionation in oxide environments, so the presence of Co1+ O4 and Co3+ O6 units in LaSrCoRuO5 is surprising. Low-temperature measurements indicate LaSrCoRuO5 adopts a ferromagnetically ordered state below 120 K due to couplings between S=1 /2 Ru3+ and S=1 Co1+ .

3.
RSC Adv ; 13(47): 33146-33158, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37954421

RESUMO

LNMO (LiNi0.5Mn1.5O4-δ) is a high-energy density positive electrode material for lithium ion batteries. Unfortunately, it suffers from capacity loss and impedance rise during cycling due to electrolyte oxidation and electrode/electrolyte interface instabilities at high operating voltages. Here, a solution-gel synthesis route was used to coat 0.5-2.5 µm LNMO particles with amorphous Li-Ti-O (LTO) for improved Li conduction, surface structural stability and cyclability. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analysis coupled with energy dispersive X-ray (EDX) showed Ti-rich amorphous coatings/islands or Ti-rich spinel layers on many of the LTO-modified LNMO facets, with a thickness varying from about 1 to 10 nm. The surface modification in the form of amorphous islands was mostly possible on high-energy crystal facets. Physicochemical observations were used to propose a molecular mechanism for the surface modification, combining insights from metalorganic chemistry with the crystallographic properties of LNMO. The improvements in functional properties were investigated in half cells. The cell impedance increased faster for the bare LNMO compared to amorphous LTO modified LNMO, resulting in Rct values as high as 1247 Ω (after 1000 cycles) for bare LNMO, against 216 Ω for the modified material. At 10C, the modified material boosted a 15% increase in average discharge capacity. The improvements in electrochemical performance were attributed to the increase in electrochemically active surface area, as well as to improved HF-scavenging, resulting in the formation of protective byproducts, generating a more stable interface during prolonged cycling.

4.
Inorg Chem ; 62(27): 10822-10832, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37382143

RESUMO

Sr2FeO3F, an oxyfluoride compound with an n = 1 Ruddlesden-Popper structure, was identified as a potential interesting mixed ionic and electronic conductor (MIEC). The phase can be synthesized under a range of different pO2 atmospheres, leading to various degrees of fluorine for oxygen substitution and Fe4+ content. A structural investigation and thorough comparison of both argon- and air-synthesized compounds were performed by combining high-resolution X-ray and electron diffraction, high-resolution scanning transmission electron microscopy, Mössbauer spectroscopy, and DFT calculations. While the argon-synthesized phase shows a well-behaved O/F ordered structure, this study revealed that oxidation leads to averaged large-scale anionic disorder on the apical site. In the more oxidized Sr2FeO3.2F0.8 oxyfluoride, containing 20% of Fe4+, two different Fe positions can be identified with a 32%/68% occupancy (P4/nmm space group). This originates due to the presence of antiphase boundaries between ordered domains within the grains. Relations between site distortion and valence states as well as stability of apical anionic sites (O vs F) are discussed. This study paves the way for further studies on both ionic and electronic transport properties of Sr2FeO3.2F0.8 and its use in MIEC-based devices, such as solid oxide fuel cells.

5.
Nat Commun ; 14(1): 2917, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217479

RESUMO

Topochemistry enables step-by-step conversions of solid-state materials often leading to metastable structures that retain initial structural motifs. Recent advances in this field revealed many examples where relatively bulky anionic constituents were actively involved in redox reactions during (de)intercalation processes. Such reactions are often accompanied by anion-anion bond formation, which heralds possibilities to design novel structure types disparate from known precursors, in a controlled manner. Here we present the multistep conversion of layered oxychalcogenides Sr2MnO2Cu1.5Ch2 (Ch = S, Se) into Cu-deintercalated phases where antifluorite type [Cu1.5Ch2]2.5- slabs collapsed into two-dimensional arrays of chalcogen dimers. The collapse of the chalcogenide layers on deintercalation led to various stacking types of Sr2MnO2Ch2 slabs, which formed polychalcogenide structures unattainable by conventional high-temperature syntheses. Anion-redox topochemistry is demonstrated to be of interest not only for electrochemical applications but also as a means to design complex layered architectures.

6.
Nanoscale ; 14(35): 12918-12927, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36043425

RESUMO

As a semiconductor ferroelectric, GeTe has become a focus of renewed attention due to the recent discovery of giant Rashba splitting. It already has a wide range of applications, from thermoelectricity to data storage. Its stability in ambient air, as well as the structure and properties of an oxide layer, define the processing media for device production and operation. Here, we studied a reaction between the GeTe (111) surface and molecular oxygen for crystals having solely inversion domains. We evaluated the reaction kinetics both ex situ and in situ using NAP XPS. The structure of the oxide layer is extensively discussed, where, according to HAADF-STEM and STEM-EDX, nanoscale phase separation of GeO2 and Te is observed, which is unusual for semiconductors. We believe that such behaviour is closely related to the ferroelectric properties and the domain structure of GeTe.

7.
Inorg Chem ; 61(31): 12373-12385, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35895504

RESUMO

Two novel chromium oxide arsenide materials have been synthesized, Sr2CrO2Cr2OAs2 (i.e., Sr2Cr3As2O3) and Sr2CrO3CrAs (i.e., Sr2Cr2AsO3), both of which contain chromium ions in two distinct layers. Sr2CrO2Cr2OAs2 was targeted following electron microscopy measurements on a related phase. It crystallizes in the space group P4/mmm and accommodates distorted CrO4As2 octahedra containing Cr2+ and distorted CrO2As4 octahedra containing Cr3+. In contrast, Sr2CrO3CrAs incorporates Cr3+ in CrO5 square-pyramidal coordination in [Sr2CrO3]+ layers and Cr2+ ions in CrAs4 tetrahedra in [CrAs]- layers and crystallizes in the space group P4/nmm. Powder neutron diffraction data reveal antiferromagnetic ordering in both compounds. In Sr2CrO3CrAs the Cr2+ moments in the [CrAs]- layers exhibit long-range ordering, while the Cr3+ moments in the [Sr2CrO3]+ layers only exhibit short-range ordering. However, in Sr2CrO2Cr2OAs2, both the Cr2+ moments in the CrO4As2 environments and the Cr3+ moments in the CrO2As4 polyhedra are long-range-ordered below 530(10) K. Above this temperature, only the Cr3+ moments are ordered with a Néel temperature slightly in excess of 600 K. A subtle structural change is evident in Sr2CrO2Cr2OAs2 below the magnetic ordering transitions.

8.
Inorg Chem ; 61(14): 5637-5652, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35360905

RESUMO

A broad range of cationic nonstoichiometry has been demonstrated for the Li-rich layered rock-salt-type oxide Li2MoO3, which has generally been considered as a phase with a well-defined chemical composition. Li2+xMo1-xO3 (-0.037 ≤ x ≤ 0.124) solid solutions were synthesized via hydrogen reduction of Li2MoO4 in the temperature range of 650-1100 °C, with x decreasing with the increase of the reduction temperature. The solid solutions adopt a monoclinically distorted O3-type layered average structure and demonstrate a robust local ordering of the Li cations and Mo3 triangular clusters within the mixed Li/Mo cationic layers. The local structure was scrutinized in detail by electron diffraction and aberration-corrected scanning transmission electron microcopy (STEM), resulting in an ordering model comprising a uniform distribution of the Mo3 clusters compatible with local electroneutrality and chemical composition. The geometry of the triangular clusters with their oxygen environment (Mo3O13 groups) has been directly visualized using differential phase contrast STEM imaging. The established local structure was used as input for density functional theory (DFT)-based calculations; they support the proposed atomic arrangement and provide a plausible explanation for the staircase galvanostatic charge profiles upon electrochemical Li+ extraction from Li2+xMo1-xO3 in Li cells. According to DFT, all electrochemical capacity in Li2+xMo1-xO3 solely originates from the cationic Mo redox process, which proceeds via oxidation of the Mo3 triangular clusters into bent Mo3 chains where the electronic capacity of the clusters depends on the initial chemical composition and Mo oxidation state defining the width of the first charge low-voltage plateau. Further oxidation at the high-voltage plateau proceeds through decomposition of the Mo3 chains into Mo2 dimers and further into individual Mo6+ cations.

9.
Dalton Trans ; 51(5): 1866-1873, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018920

RESUMO

KBiNb2O7 was prepared from RbBiNb2O7 by a sequence of cation exchange reactions which first convert RbBiNb2O7 to LiBiNb2O7, before KBiNb2O7 is formed by a further K-for-Li cation exchange. A combination of neutron, synchrotron X-ray and electron diffraction data reveal that KBiNb2O7 adopts a polar, layered, perovskite structure (space group A11m) in which the BiNb2O7 layers are stacked in a (0, ½, z) arrangement, with the K+ cations located in half of the available 10-coordinate interlayer cation sites. The inversion symmetry of the phase is broken by a large displacement of the Bi3+ cations parallel to the y-axis. HAADF-STEM images reveal that KBiNb2O7 exhibits frequent stacking faults which convert the (0, ½, z) layer stacking to (½, 0, z) stacking and vice versa, essentially switching the x- and y-axes of the material. By fitting the complex diffraction peak shape of the SXRD data collected from KBiNb2O7 it is estimated that each layer has approximately a 9% chance of being defective - a high level which is attributed to the lack of cooperative NbO6 tilting in the material, which limits the lattice strain associated with each fault.

10.
Dalton Trans ; 50(42): 15359-15369, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34642733

RESUMO

Solid state compounds which exhibit non-centrosymmetric crystal structures are of great interest due to the physical properties they can exhibit. The 'hybrid improper' mechanism - in which two non-polar distortion modes couple to, and stabilize, a further polar distortion mode, yielding an acentric crystal structure - offers opportunities to prepare a range of novel non-centrosymmetric solids, but examples of compounds exhibiting acentric crystal structures stabilized by this mechanism are still relatively rare. Here we describe a series of bismuth-containing layered perovskite oxide phases, RbBiNb2O7, LiBiNb2O7 and NaBiNb2O7, which have structural frameworks compatible with hybrid-improper ferroelectricity, but also contain Bi3+ cations which are often observed to stabilize acentric crystal structures due to their 6s2 electronic configurations. Neutron powder diffraction analysis reveals that RbBiNb2O7 and LiBiNb2O7 adopt polar crystal structures (space groups I2cm and B2cm respectively), compatible with stabilization by a trilinear coupling of non-polar and polar modes. The Bi3+ cations present are observed to enhance the magnitude of the polar distortions of these phases, but are not the primary driver for the acentric structure, as evidenced by the observation that replacing the Bi3+ cations with Nd3+ cations does not change the structural symmetry of the compounds. In contrast the non-centrosymmetric, but non-polar structure of NaBiNb2O7 (space group P212121) differs significantly from the centrosymmetric structure of NaNdNb2O7, which is attributed to a second-order Jahn-Teller distortion associated with the presence of the Bi3+ cations.

11.
J Am Chem Soc ; 143(11): 4213-4223, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33719436

RESUMO

The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li∼0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state 7Li and 11B NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of Li∼0.5NiB and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a "zip-lock" mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB]2 and Li[NiB]3 compositions. The crystal structure of Li∼0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB]2, or triple [NiB]3 layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li∼0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).

12.
Inorg Chem ; 59(21): 15898-15912, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33058683

RESUMO

Sr2CrO2Cr2As2 and Ba2CrO2Cr2As2 with Cr2+ ions in CrO2 sheets and in CrAs layers crystallize with the Sr2Mn3Sb2O2 structure (space group I4/mmm, Z = 2) and lattice parameters a = 4.00800(2) Å, c = 18.8214(1) Å (Sr2CrO2Cr2As2) and a = 4.05506(2) Å, c = 20.5637(1) Å (Ba2CrO2Cr2As2) at room temperature. Powder neutron diffraction reveals checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the arsenide layers below TN1_Sr, of 600(10) K (Sr2CrO2Cr2As2) and TN1_Ba 465(5) K (Ba2CrO2Cr2As2) with the moments initially directed perpendicular to the layers in both compounds. Checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the oxide layer below 230(5) K for Ba2CrO2Cr2As2 occurs with these moments also perpendicular to the layers, consistent with the orientation preferences of d4 moments in the two layers. In contrast, below 330(5) K in Sr2CrO2Cr2As2, the oxide layer Cr2+ moments are initially oriented in the CrO2 plane; but on further cooling, these moments rotate to become perpendicular to the CrO2 planes, while the moments in the arsenide layers rotate by 90° with the moments on the two sublattices remaining orthogonal throughout [behavior recently reported independently by Liu et al. [Liu et al. Phys. Rev. B 2018, 98, 134416]]. In Sr2CrO2Cr2As2, electron diffraction and high resolution powder X-ray diffraction data show no evidence for a structural distortion that would allow the two Cr2+ sublattices to couple, but high resolution neutron powder diffraction data suggest a small incommensurability between the magnetic structure and the crystal structure, which may account for the coupling of the two sublattices and the observed spin reorientation. The saturation values of the Cr2+ moments in the CrO2 layers (3.34(1) µB (for Sr2CrO2Cr2As2) and 3.30(1) µB (for Ba2CrO2Cr2As2)) are larger than those in the CrAs layers (2.68(1) µB for Sr2CrO2Cr2As2 and 2.298(8) µB for Ba2CrO2Cr2As2) reflecting greater covalency in the arsenide layers.

13.
Inorg Chem ; 58(21): 14863-14870, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31638780

RESUMO

 Reaction of the n = 1 Ruddlesden-Popper oxide LaSr3CoRuO8 with CaH2 yields the oxyhydride phase LaSr3CoRuO4H4 via a topochemical anion exchange. Close inspection of the X-ray and neutron powder diffraction data in combination with HAADF-STEM images reveals that the nanoparticles of SrO are exsolved from the system during the reaction, with the change in cation stoichiometry accommodated by the inclusion of n > 1 (Co/Ru)nOn+1H2n "perovskite" layers into the Ruddlesden-Popper stacking sequence. This novel pseudotopochemical process offers a new route for the formation of n > 1 Ruddlesden-Popper structured materials. Magnetization data are consistent with a LaSr3Co+Ru2+O4H4 (Co+, d8, S = 1; Ru2+, d6, S = 0) oxidation/spin state combination. Neutron diffraction and µ+SR data show no evidence for long-range magnetic order down to 2 K, suggesting the diamagnetic Ru2+ centers impede the Co-Co magnetic-exchange interactions.

14.
Angew Chem Int Ed Engl ; 58(44): 15855-15862, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31373096

RESUMO

Two novel lithium nickel boride polymorphs, RT-LiNiB and HT-LiNiB, with layered crystal structures are reported. This family of compounds was theoretically predicted by using the adaptive genetic algorithm (AGA) and subsequently synthesized by a hydride route with LiH as the lithium source. Unique among the known ternary transition-metal borides, the LiNiB structures feature Li layers alternating with nearly planar [NiB] layers composed of Ni hexagonal rings with a B-B pair at the center. A comprehensive study using a combination of single crystal/synchrotron powder X-ray diffraction, solid-state 7 Li and 11 B NMR spectroscopy, scanning transmission electron microscopy, quantum-chemical calculations, and magnetism has shed light on the intrinsic features of these polymorphic compounds. The unique layered structures of LiNiB compounds make them ultimate precursors for exfoliation studies, thus paving a way toward two-dimensional transition-metal borides, MBenes.

15.
Nanomaterials (Basel) ; 8(11)2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405032

RESUMO

To obtain a nanocrystalline SnO2 matrix and mono- and bimetallic nanocomposites SnO2/Pd, SnO2/Pt, and SnO2/PtPd, a flame spray pyrolysis with subsequent impregnation was used. The materials were characterized using X-ray diffraction (XRD), a single-point BET method, transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The electronic state of the metals in mono- and bimetallic clusters was determined using X-ray photoelectron spectroscopy (XPS). The active surface sites were investigated using the Fourier Transform infrared spectroscopy (FTIR) and thermo-programmed reduction with hydrogen (TPR-H2) methods. The sensor response of blank SnO2 and nanocomposites had a carbon monoxide (CO) level of 6.7 ppm and was determined in the temperature range 60⁻300 °C in dry (Relative Humidity (RH) = 0%) and humid (RH = 20%) air. The sensor properties of the mono- and bimetallic nanocomposites were analyzed on the basis of information on the electronic state, the distribution of modifiers in SnO2 matrix, and active surface centers. For SnO2/PtPd, the combined effect of the modifiers on the electrophysical properties of SnO2 explained the inversion of sensor response from n- to p-types observed in dry conditions.

16.
Nanomaterials (Basel) ; 8(10)2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297657

RESUMO

Nanocomposites In2O3/Ag obtained by ultraviolet (UV) photoreduction and impregnation methods were studied as materials for CO sensors operating in the temperature range 25⁻250 °C. Nanocrystalline In2O3 and In2O3/Ag nanocomposites were characterized by X-ray diffraction (XRD), single-point Brunauer-Emmet-Teller (BET) method, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The active surface sites were investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy and thermo-programmed reduction with hydrogen (TPR-H2) method. Sensor measurements in the presence of 15 ppm CO demonstrated that UV treatment leads to a complete loss of In2O3 sensor sensitivity, while In2O3/Ag-UV nanocomposite synthesized by UV photoreduction demonstrates an increased sensor signal to CO at T < 200 °C. The observed high sensor response of the In2O3/Ag-UV nanocomposite at room temperature may be due to the realization of an additional mechanism of CO oxidation with participation of surface hydroxyl groups associated via hydrogen bonds.

17.
Materials (Basel) ; 11(8)2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30060556

RESUMO

The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium's foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab's recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.

18.
Inorg Chem ; 56(6): 3489-3498, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28257201

RESUMO

This study reports on the synthesis and characterization of MAX phases in the (Zr,Ti)n+1AlCn system. The MAX phases were synthesized by reactive hot pressing and pressureless sintering in the 1350-1700 °C temperature range. The produced ceramics contained large fractions of 211 and 312 (n = 1, 2) MAX phases, while strong evidence of a 413 (n = 3) stacking was found. Moreover, (Zr,Ti)C, ZrAl2, ZrAl3, and Zr2Al3 were present as secondary phases. In general, the lattice parameters of the hexagonal 211 and 312 phases followed Vegard's law over the complete Zr-Ti solid solution range, but the 312 phase showed a non-negligible deviation from Vegard's law around the (Zr0.33,Ti0.67)3Al1.2C1.6 stoichiometry. High-resolution scanning transmission electron microscopy combined with X-ray diffraction demonstrated ordering of the Zr and Ti atoms in the 312 phase, whereby Zr atoms occupied preferentially the central position in the close-packed M6X octahedral layers. The same ordering was also observed in 413 stackings present within the 312 phase. The decomposition of the secondary (Zr,Ti)C phase was attributed to the miscibility gap in the ZrC-TiC system.

19.
Inorg Chem ; 56(2): 931-942, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28009509

RESUMO

The Bi3n+1Ti7Fe3n-3O9n+11 materials are built of (001)p plane-parallel perovskite blocks with a thickness of n (Ti,Fe)O6 octahedra, separated by periodic translational interfaces. The interfaces are based on anatase-like chains of edge-sharing (Ti,Fe)O6 octahedra. Together with the octahedra of the perovskite blocks, they create S-shaped tunnels stabilized by lone pair Bi3+ cations. In this work, the structure of the n = 4-6 Bi3n+1Ti7Fe3n-3O9n+11 homologues is analyzed in detail using advanced transmission electron microscopy, powder X-ray diffraction, and Mössbauer spectroscopy. The connectivity of the anatase-like chains to the perovskite blocks results in a 3ap periodicity along the interfaces, so that they can be located either on top of each other or with shifts of ±ap along [100]p. The ordered arrangement of the interfaces gives rise to orthorhombic Immm and monoclinic A2/m polymorphs with the unit cell parameters a = 3ap, b = bp, c = 2(n + 1)cp and a = 3ap, b = bp, c = 2(n + 1)cp - ap, respectively. While the n = 3 compound is orthorhombic, the monoclinic modification is more favorable in higher homologues. The Bi3n+1Ti7Fe3n-3O9n+11 structures demonstrate intricate patterns of atomic displacements in the perovskite blocks, which are supported by the stereochemical activity of the Bi3+ cations. These patterns are coupled to the cationic coordination of the oxygen atoms in the (Ti,Fe)O2 layers at the border of the perovskite blocks. The coupling is strong in the n = 3, 4 homologues, but gradually reduces with the increasing thickness of the perovskite blocks, so that, in the n = 6 compound, the dominant mode of atomic displacements is aligned along the interface planes. The displacements in the adjacent perovskite blocks tend to order antiparallel, resulting in an overall antipolar structure. The Bi3n+1Ti7Fe3n-3O9n+11 materials demonstrate an unusual diversity of structure defects. The n = 4-6 homologues are robust antiferromagnets below TN = 135, 220, and 295 K, respectively. They show a high dielectric constant that weakly increases with temperature and is relatively insensitive to the Ti/Fe ratio.

20.
Dent Mater ; 32(12): e327-e337, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27697332

RESUMO

OBJECTIVE: The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. METHODS: Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n=6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n=10), single edge V-notched beam (SEVNB) fracture toughness (n=8) and Vickers hardness (n=10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n=3) after accelerated hydrothermal aging in steam at 134°C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (α=0.05). RESULTS: Lowering the alumina content below 0.25wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. SIGNIFICANCE: Three different approaches were compared to improve the translucency of 3Y-TZP ceramics.


Assuntos
Ítrio , Zircônio , Cerâmica , Materiais Dentários , Análise do Estresse Dentário , Dureza , Teste de Materiais , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...