Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 7(31): 17032-43, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26196163

RESUMO

In this work dielectric and electrical properties of Al-doped HfO2 layers deposited by plasma-enhanced atomic layer deposition in dependence on the thickness and the added Al amount in the films have been investigated. Special attention is dedicated to C-V and I-V hysteresis analysis as a measure for trapping phenomena in the films. A detailed study of conduction mechanisms in dependence on the composition of the layers has also been performed. The densities and spatial and energy positions of traps have been examined. It is found that only a small amount of Al-doping decreases the trapping which is assigned to a reduction of oxygen vacancy-related traps in HfO2. On the contrary, higher amounts of Al introduced in HfO2 films increase the trapping ability of the stacks which is due to the introduction of deeper Al2O3-related traps. The results imply that by adding a proper amount of Al into HfO2 it is possible to tailor dielectric and electrical properties of high-k layers toward meeting the criteria for particular applications.

2.
ACS Appl Mater Interfaces ; 6(4): 2486-92, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24483129

RESUMO

Topography and leakage current maps of TiO2 films grown by atomic layer deposition on RuO2 electrodes using either a TiCl4 or a Ti(O-i-C3H7)4 precursor were characterized at nanoscale by conductive atomic force microscopy (CAFM). For both films, the leakage current flows mainly through elevated grains and not along grain boundaries. The overall CAFM leakage current is larger and more localized for the TiCl4-based films (0.63 nm capacitance equivalent oxide thickness, CET) compared to the Ti(O-i-C3H7)4-based films (0.68 nm CET). Both films have a physical thickness of ∼20 nm. The nanoscale leakage currents are consistent with macroscopic leakage currents from capacitor structures and are correlated with grain characteristics observed by topography maps and transmission electron microscopy as well as with X-ray diffraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA