Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
FEMS Microbiol Ecol ; 100(7)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38777744

RESUMO

Microbial communities are vital to our lives, yet their ecological functioning and dynamics remain poorly understood. This understanding is crucial for assessing threats to these systems and leveraging their biotechnological applications. Given that temporal dynamics are linked to community functioning, this study investigated the drivers of community succession in the wine yeast community. We experimentally generated population dynamics data and used it to create an interpretable model with a gradient boosted regression tree approach. The model was trained on temporal data of viable species populations in various combinations, including pairs, triplets, and quadruplets, and was evaluated for predictive accuracy and input feature importance. Key findings revealed that the inoculation dosage of non-Saccharomyces species significantly influences their performance in mixed cultures, while Saccharomyces cerevisiae consistently dominates regardless of initial abundance. Additionally, we observed multispecies interactions where the dynamics of Wickerhamomyces anomalus were influenced by Torulaspora delbrueckii in pairwise cultures, but this interaction was altered by the inclusion of S. cerevisiae. This study provides insights into yeast community succession and offers valuable machine learning-based analysis techniques applicable to other microbial communities, opening new avenues for harnessing microbial communities.


Assuntos
Saccharomyces cerevisiae , Vinho , Vinho/microbiologia , Saccharomyces cerevisiae/genética , Leveduras/genética , Microbiota , Análise de Regressão
2.
Appl Opt ; 63(1): 56-65, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175005

RESUMO

For reliable tomographic measurements the underlying 2D images from different viewing angles must be matched in terms of signal detection characteristics. Non-linearity effects introduced by intensified cameras and spatial intensity variations induced from inhomogeneous transmission of the optical setup can lead, if not corrected, to a biased tomographic reconstruction result. This paper presents a complete correction procedure consisting of a combination of a non-linearity and flatfield correction for a tomographic optical setup employing imaging fiber bundles and four intensified cameras. Influencing parameters on the camera non-linearity are investigated and discussed. The correction procedure is applied to 3D temperature measurements by two-color pyrometry and compared to results without correction. The present paper may serve as a guideline for an appropriate correction procedure for any type of measurement involving optical tomography and intensified cameras.

3.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37660277

RESUMO

In winemaking, the development of new fermentation strategies, such as the use of mixed starter cultures with Saccharomyces cerevisiae (Sc) yeast and non-Saccharomyces (NS) species, requires a better understanding of how yeasts interact, especially at the beginning of fermentation. Despite the growing knowledge on interactions between Sc and NS, few data are available on the interactions between different species of NS. It is furthermore still unclear whether interactions are primarily driven by generic differences between yeast species or whether individual strains are the evolutionarily relevant unit for biotic interactions. This study aimed at acquiring knowledge of the relevance of species and strain in the population dynamics of cocultures between five yeast species: Hanseniaspora uvarum, Lachancea thermotolerans, Starmerella bacillaris, Torulaspora delbrueckii and Sc. We performed cocultures between 15 strains in synthetic grape must and monitored growth in microplates. Both positive and negative interactions were identified. Based on an interaction index, our results showed that the population dynamics seemed mainly driven by the two species involved. Strain level was more relevant in modulating the strength of the interactions. This study provides fundamental insights into the microbial dynamics in early fermentation and contribute to the understanding of more complex consortia encompassing multiple yeasts trains.


Assuntos
Vitis , Vinho , Saccharomyces cerevisiae , Vinho/análise , Técnicas de Cocultura , Dinâmica Populacional , Fermentação
5.
Foods ; 12(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36981102

RESUMO

Geographic origin and terroir are very important parameters for wine and significantly impact price. Incorrect declarations are known to occur intentionally to increase profit, thus, measures for control are required. Accompanying paperwork has been shown to be unreliable, thus, control of the product itself is required. Here we investigate and compare the stable isotope pattern of South African (Western Cape Province) wine, and evaluate its potential for discrimination from Central European/Austrian wine. The results show that the isotope values of the investigated South African wine samples differ significantly from the values of average Austrian (Central European) wines. Thus, a differentiation of the products from these two regions by stable isotope analysis is generally straightforward. However, the data suggest that vintages from years with exceptionally hot and dry summer weather in Europe may reduce the differentiation between these regions. Therefore, this method is a potent tool for the discrimination of Austrian (Central European) and South African wines under current climatic conditions, although drier and hotter summer weather in Europe, which is likely to occur more frequently due to global climate change, may require further method adjustments in the future.

6.
Light Sci Appl ; 12(1): 47, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36807322

RESUMO

Unburnt hydrocarbon flames produce soot, which is the second biggest contributor to global warming and harmful to human health. The state-of-the-art high-speed imaging techniques, developed to study non-repeatable turbulent flames, are limited to million-frames-per-second imaging rates, falling short in capturing the dynamics of critical species. Unfortunately, these techniques do not provide a complete picture of flame-laser interactions, important for understanding soot formation. Furthermore, thermal effects induced by multiple consecutive pulses modify the optical properties of soot nanoparticles, thus making single-pulse imaging essential. Here, we report single-shot laser-sheet compressed ultrafast photography (LS-CUP) for billion-frames-per-second planar imaging of flame-laser dynamics. We observed laser-induced incandescence, elastic light scattering, and fluorescence of soot precursors - polycyclic aromatic hydrocarbons (PAHs) in real-time using a single nanosecond laser pulse. The spatiotemporal maps of the PAHs emission, soot temperature, primary nanoparticle size, soot aggregate size, and the number of monomers, present strong experimental evidence in support of the theory and modeling of soot inception and growth mechanism in flames. LS-CUP represents a generic and indispensable tool that combines a portfolio of ultrafast combustion diagnostic techniques, covering the entire lifecycle of soot nanoparticles, for probing extremely short-lived (picoseconds to nanoseconds) species in the spatiotemporal domain in non-repeatable turbulent environments. Finally, LS-CUP's unparalleled capability of ultrafast wide-field temperature imaging in real-time is envisioned to unravel mysteries in modern physics such as hot plasma, sonoluminescence, and nuclear fusion.

7.
J Fungi (Basel) ; 8(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36294599

RESUMO

Microbial diversity in vineyards and in grapes has generated significant scientific interest. From a biotechnological perspective, vineyard and grape biodiversity has been shown to impact soil, vine, and grape health and to determine the fermentation microbiome and the final character of wine. Thus, an understanding of the drivers that are responsible for the differences in vineyard and grape microbiota is required. The impact of soil and climate, as well as of viticultural practices in geographically delimited areas, have been reported. However, the limited scale makes the identification of generally applicable drivers of microbial biodiversity and of specific microbial fingerprints challenging. The comparison and meta-analysis of different datasets is furthermore complicated by differences in sampling and in methodology. Here we present data from a wide-ranging coordinated approach, using standardized sampling and data generation and analysis, involving four countries with different climates and viticultural traditions. The data confirm the existence of a grape core microbial consortium, but also provide evidence for country-specific microbiota and suggest the existence of a cultivar-specific microbial fingerprint for Cabernet Sauvignon grape. This study puts in evidence new insight of the grape microbial community in two continents and the importance of both location and cultivar for the definition of the grape microbiome.

8.
Front Microbiol ; 13: 823581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677913

RESUMO

Lipids are essential energy storage compounds and are the core structural elements of all biological membranes. During wine alcoholic fermentation, the ability of yeasts to adjust the lipid composition of the plasma membrane partly determines their ability to cope with various fermentation-related stresses, including elevated levels of ethanol and the presence of weak acids. In addition, the lipid composition of grape juice also impacts the production of many wine-relevant aromatic compounds. Several studies have evaluated the impact of lipids and of their metabolism on fermentation performance and aroma production in the dominant wine yeast Saccharomyces cerevisiae, but limited information is available on other yeast species. Thus, the aim of this study was to evaluate the influence of specific fatty acid and sterol mixtures on various non-Saccharomyces yeast fermentation rates and the production of primary fermentation metabolites. The data show that the response to different lipid mixtures is species-dependent. For Metschnikowia pulcherrima, a slight increase in carbon dioxide production was observed in media enriched with unsaturated fatty acids whereas Kluyveromyces marxianus fermented significantly better in synthetic media containing a higher concentration of polyunsaturated fatty acids than monounsaturated fatty acids. Torulaspora delbrueckii fermentation rate increased in media supplemented with lipids present at an equimolar concentration. The data indicate that these different responses may be linked to variations in the lipid profile of these yeasts and divergent metabolic activities, in particular the regulation of acetyl-CoA metabolism. Finally, the results suggest that the yeast metabolic footprint and ultimately the wine organoleptic properties could be optimized via species-specific lipid adjustments.

9.
World J Microbiol Biotechnol ; 37(11): 186, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34580785

RESUMO

Microbial multispecies ecosystems are responsible for many biotechnological processes and are particularly important in food production. In wine fermentations, in addition to the natural microbiota, several commercially relevant yeast species may be co-inoculated to achieve specific outcomes. However, such multispecies fermentations remain largely unpredictable because of multilevel interactions between naturally present and/or co-inoculated species. Understanding the nature of such interactions has therefore become essential for successful implementation of such strategies. Here we investigate interactions between strains of Saccharomyces cerevisiae and Lachancea thermotolerans. Co-fermentations with both species sharing the same bioreactor (physical contact) were compared to co-fermentations with physical separation between the species in a membrane bioreactor ensuring free exchange of metabolites. Yeast culturability, viability and the production of core metabolites were monitored. The previously reported negative interaction between these two yeast species was confirmed. Physical contact greatly reduced the culturability and viability of L. thermotolerans and led to earlier cell death, compared to when these yeasts were co-fermenting without cell-cell contact. In turn, in the absence of cell-cell contact, L. thermotolerans metabolic activity led to an earlier decline in culturability in S. cerevisiae. Cell-cell contact did not result in significant differences in the major fermentation metabolites ethanol, acetic acid and lactic acid, but impacted on the production of some volatile compounds.


Assuntos
Comunicação Celular/fisiologia , Fermentação , Filogenia , Saccharomyces cerevisiae/metabolismo , Ácido Acético/metabolismo , Reatores Biológicos , Técnicas de Cocultura , Ecossistema , Etanol/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Vitis , Vinho
10.
Foods ; 10(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34441488

RESUMO

Culture is an important factor that influences how marketing interacts with food choice. This study aims at exploring the effect of consumers' Country of Origin (COO) on wine representations and perception using Chenin blanc as a model. The first objective was to evaluate the role of origin in the construction of the representation. We used the theoretical framework of social representation to compare South African (SA) and French consumers' representations via a word association task. The results indicated that SA representations are dominated by consumers' experience of the wine (sensory and emotional dimensions), whereas French representations are dominated by the wine itself, in particular its origin and mode of consumption. The second objective was to evaluate the effect of origin on wine categorization in two conditions: with and without information concerning the two geographical origins of the samples. Results showed that providing information on the origin of the wines affected French participants more than SA participants. In both conditions, the groups of wines formed in the sorting tasks by SA participants were based on sensory descriptors and appeared not to be impacted by the information on origin. In contrast, providing information on the origin of the wines to French participants led to an increased use of the words "Loire", "South Africa" and "familiar" suggesting a different sorting strategy more deliberately based on the origin of the wines. Our findings have important implications for the marketing and export activities within the wine industry.

11.
PLoS One ; 16(7): e0254919, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34292980

RESUMO

Anecdotal evidence suggests that spontaneous alcoholic fermentation of grape juice is becoming a more popular option in global wine production. Wines produced from the same grape juice by inoculation or spontaneous fermentation usually present distinct chemical and sensorial profiles. Inoculation has been associated with more similar end-products, a loss of typicity, and lower aroma complexity, and it has been suggested that this may be linked to suppression of the local or regional wine microbial ecosystems responsible for spontaneous fermentations. However, whether inoculated fermentations of different juices from different regions really end up with a narrower, less diverse chemical profile than those of spontaneously fermented juices has never been properly investigated. To address this question, we used grape juice from three different varieties, Grüner Veltliner (white), Zweigelt (red), and Pinot noir (red), originating from different regions in Austria to compare spontaneous and single active dry yeast strains inoculated fermentations of the same grape samples. The chemical analysis covered primary metabolites such as glycerol, ethanol and organic acids, and volatile secondary metabolites, including more than 40 major and minor esters, as well as higher alcohols and volatile fatty acids, allowing an in depth statistical evaluation of differences between fermentation strategies. The fungal (mainly yeast) communities throughout fermentations were monitored using automated ribosomal intergenic spacer analysis. The data provide evidence that inoculation with single active dry yeast strains limits the diversity of the chemical fingerprints. The fungal community profiles clearly show that inoculation had an effect on fermentation dynamics and resulted in chemically less diverse wines.


Assuntos
Ecossistema , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Vitis , Vinho/análise , Áustria
12.
Appl Opt ; 60(17): 5000-5011, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34143064

RESUMO

The present study deals with the solvent-dependent morphology-dependent resonances (MDR) in the laser-induced fluorescence (LIF) signal of monodisperse gasoline droplets (30 µm-60 µm) generated with a droplet generator. To investigate the influence of an ethanol addition to gasoline and the respective LIF signal of the dye nile red dissolved in these fuel blends, a reference gasoline fuel is blended with various ethanol concentrations from E0 (gasoline) to E100 (pure ethanol). A spectral fluorescence characterization of the investigated fuel mixtures at various concentrations is carried out in a micro cell in order to identify the dye and ethanol concentration influence of the respective fuel mixtures. The absorption and emission spectra of the fuel mixtures show a Stokes shift with increasing ethanol concentration towards larger wavelengths. The coefficient of variation (COV) of the fluorescence signals of spherical droplets was utilized to characterize the MDR effects within the droplet LIF images. The investigations revealed an increase of MDR contribution in terms of the COV of LIF signals with larger droplet diameters. For small droplets, no monotonic trend was found for contribution of MDR in the LIF signal as a function of the ethanol concentration. For larger droplets (e.g., 50 µm-60 µm), a lower contribution of MDR in LIF signals was observed with increasing ethanol content. For E80 and most of the studied ethanol blends, the normalized integrated COV values exhibited maxima at certain droplet sizes (40 µm, 47.5 µm, and 55 µm), which indicate the presence of distinct MDR effects.

13.
Opt Express ; 29(4): 5304-5315, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726069

RESUMO

This work presents a new approach for high-speed four-dimensional (3D + t) thermometry using only two high-speed cameras which are equipped with different band pass filters to capture thermal radiation signals at two narrow wavelength bands. With the help of a customized fiber bundle and a beam splitter, a total number of nine projections at each band were recorded, and the temperature distribution was evaluated by tomographic two-color pyrometry. In order to validate the effectiveness of this method, the 3D temperature distribution of a premixed steady flat flame was evaluated. The determined temperatures were compared to those of other studies, as well as to the results from inverse Abel transform and line-of-sight data. Further, the 3D temperature evolution of a weakly turbulent diffusion flame was observed at a repetition rate of 7.5 kHz. Such 4D temperature measurements are expected to be valuable in understanding turbulent combustion mechanisms especially of practical devices.

14.
Food Res Int ; 141: 110142, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33642009

RESUMO

Lipids are valuable compounds present in all living organisms, which display an array of functions related to compartmentalization, energy storage and enzyme activation. Furthermore, these compounds are an integral part of the plasma membrane which is responsible for maintaining structure, facilitating the transport of solutes in and out of the cell and cellular signalling necessary for cell survival. The lipid composition of the yeast Saccharomyces cerevisiae has been extensively investigated and the impact of lipids on S. cerevisiae cellular functions during wine alcoholic fermentation is well documented. Although other yeast species are currently used in various industries and are receiving increasing attention in winemaking, little is known about their lipid metabolism. This review article provides an extensive and critical evaluation of our knowledge on the biosynthesis, accumulation, metabolism and regulation of fatty acids and sterols in yeasts. The implications of the yeast lipid content on stress resistance as well as performance during alcoholic fermentation are discussed and a particular emphasis is given on non-Saccharomyces yeasts. Understanding lipid requirements and metabolism in non-Saccharomyces yeasts may lead to a better management of these yeast to enhance their contributions to wine properties.


Assuntos
Saccharomyces cerevisiae , Vinho , Ácidos Graxos , Fermentação , Esteróis , Vinho/análise
15.
FEMS Yeast Res ; 20(7)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32960268

RESUMO

The yeast Lachancea thermotolerans is of significant biotechnological interest, and selected strains of this species have become commonly used starter cultures in wine fermentation. However, the impact of this species on wine is frequently limited by the rapid dominance of Saccharomyces cerevisiae strains which are better adapted to wine alcoholic fermentation conditions. Previous studies have shown that the major limiting factor for L. thermotolerans competitive performance in the wine ecosystem is oxygen availability, and not ethanol levels as had been previously suggested. Here we investigated the transcriptional response of L. thermotolerans to anaerobiosis in wine fermentation conditions. The data show that L. thermotolerans broadly redirects gene expression towards genes involved in central carbon metabolism, lipid metabolism, remodeling of the cell wall as well as autophagy. Furthermore, the induction of genes that are likely involved in the generation of lactate indicates a redirection of metabolic flux towards this metabolite. The data provide the first insight into the oxygen-dependent response of L. thermotolerans and suggest potential genetic targets to improve lactate production and/or anaerobic fermentation performance of this yeast.


Assuntos
Oxigênio/metabolismo , Saccharomycetales/metabolismo , Transcriptoma , Vinho/microbiologia , Anaerobiose , Fermentação , Regulação Fúngica da Expressão Gênica , Ácido Láctico/biossíntese
16.
Microorganisms ; 8(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722047

RESUMO

Saccharomyces cerevisiae and Lactobacillus plantarum are responsible for alcoholic and malolactic fermentation, respectively. Successful completion of both fermentations is essential for many styles of wine, and an understanding of how these species interact with each other, as well as the development of compatible pairings of these species, will help to manage the process. However, targeted improvements of species interactions are difficult to perform, in part because of the chemical and biological complexity of natural grape juice. Synthetic ecological systems reduce this complexity and can overcome these difficulties. In such synthetic systems, mutualistic growth of different species can be enforced through the reciprocal exchange of essential nutrients. Here, we implemented a novel approach to evolve mutualistic traits by establishing a co-dependent relationship between S. cerevisiae BY4742Δthi4 and Lb. plantarum IWBT B038 by omitting different combinations of amino acids from a chemically defined synthetic medium simulating standard grape juice. After optimization, the two species were able to support the growth of each other when grown in the absence of appropriate combinations of amino acids. In these obligatory mutualistic conditions, BY4742Δthi4 and IWBT B038 were co-evolved for approximately 100 generations. The selected evolved isolates showed improved mutualistic growth and the growth patterns under non-selective conditions indicate the emergence of mutually beneficial adaptations independent of the synthetic selection pressure. The combined use of synthetic ecology and co-evolution is a promising strategy to better understand and biotechnologically improve microbial interactions.

17.
Obes Sci Pract ; 6(3): 293-299, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32523718

RESUMO

OBJECTIVE: Weight loss during an inpatient obesity treatment is an important predictor of subsequent weight maintenance. However, psychological factors influencing weight loss are not well established. Psychological models suggest some importance of executive functioning and emotion regulation strategies. Therefore, this study investigated whether these factors predict weight loss during an inpatient obesity treatment and whether this effect holds after controlling for general personal and treatment characteristics. METHOD: A total of 158 adolescents with diagnosed obesity underwent inpatient obesity treatment at a German rehabilitation clinic. Psychological factors (executive functioning and emotion regulation) were measured at admission and used to predict BMI reduction after treatment completion. RESULTS: More frequent use of reappraisal as an emotion regulation strategy, but not suppression or executive functioning, predicted weight loss at the end of the obesity treatment, even after controlling for age, gender, treatment duration, and BMI at admission. CONCLUSION: Functional emotion regulation strategies, like reappraisal, might offer an additional target for obesity treatment programmes, complementary to the more traditional components of psychoeducation, physical activity, and caloric restriction.

18.
Fungal Biol ; 124(5): 235-252, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389286

RESUMO

Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in São José dos Campos, São Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology.


Assuntos
Fungos , Estresse Fisiológico , Brasil , Fungos/fisiologia
19.
Sci Rep ; 10(1): 4911, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188881

RESUMO

Spontaneous wine fermentation is characterized by yeast population evolution, modulated by complex physical and metabolic interactions amongst various species. The contribution of any given species to the final wine character and aroma will depend on its numerical persistence during the fermentation process. Studies have primarily evaluated the effect of physical and chemical factors such as osmotic pressure, pH, temperature and nutrient availability on mono- or mixed-cultures comprising 2-3 species, but information about how interspecies ecological interactions in the wine fermentation ecosystem contribute to population dynamics remains scant. Therefore, in the current study, the effect of temperature and sulphur dioxide (SO2) on the dynamics of a multi-species yeast consortium was evaluated in three different matrices including synthetic grape juice, Chenin blanc and Grechetto bianco. The population dynamics were affected by temperature and SO2, reflecting differences in stress resistance and habitat preferences of the different species and influencing the production of most volatile aroma compounds. Evidently at 15 °C and in the absence of SO2 non-Saccharomyces species were dominant, whereas at 25 °C and when 30 mg/L SO2 was added S. cerevisiae dominated. Population growth followed similar patterns in the three matrices independently of the conditions. The data show that fermentation stresses lead to an individual response of each species, but that this response is strongly influenced by the interactions between species within the ecosystem. Thus, our data suggest that ecological interactions, and not only physico-chemical conditions, are a dominant factor in determining the contribution of individual species to the outcome of the fermentation.


Assuntos
Fermentação , Microbiologia de Alimentos , Microbiota , Saccharomyces cerevisiae , Vinho , Sucos de Frutas e Vegetais/microbiologia , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/metabolismo , Temperatura , Vitis
20.
Food Res Int ; 128: 108878, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31955778

RESUMO

The qualitative sensory perception of individual and of complex mixtures of five compounds, guaiacol ('burnt note'), o-cresol ('phenolic/tar'), 4-ethylphenol (4-EP, 'leather/barnyard'), 2-iso-butyl-3-methoxypyrazine (IBMP, 'green pepper/herbaceous'), and 2,4,6-trichloroanisole (TCA, 'cork taint/ mouldy') were tested in a partially de-aromatised red wine matrix using descriptive analysis by a trained panel of eleven judges. Compounds were characterised at peri- and sub-threshold concentrations using a partial D-optimal statistical design and response surface methodology. Results indicated that complex mixtures in red wine elicit an olfactory response that could not be predicted from the attributes or descriptors of single compounds. Positive sweet/fruity attributes were more intense in solutions containing fewer off-flavour compounds. Novel findings of this study include that IBMP at sub- and peri-threshold levels shows perceptual interaction with volatile phenols at the same levels, and samples containing combinations of these compounds manifested herbaceous and burnt characteristics. Olfactory interactions of this many off-flavour compounds have not been investigated previously in one study. The findings have direct implications for wines made from cultivars that are known to contain these compounds, and add to the understanding of the behaviour and impact of very low levels (peri- and sub-threshold) of volatile phenols, IBMP, and TCA derived from various sources during winemaking.


Assuntos
Hidrocarbonetos Aromáticos/química , Odorantes , Pirazinas/química , Vinho/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...