Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38248604

RESUMO

The occurrence of bone disorders is steadily increasing worldwide. Bone tissue engineering (BTE) has emerged as a promising alternative to conventional treatments of bone defects, developing bone scaffolds capable of promoting bone regeneration. In this research, biomimetic scaffolds based on ion-substituted calcium phosphates, derived from cuttlefish bone, were prepared using a hydrothermal method. To synthesize Mn2+-substituted scaffolds, three different manganese concentrations (corresponding to 1, 2.5, and 5 mol% Mn substitutions for Ca into hydroxyapatite) were used. Also, syntheses with the simultaneous addition of an equimolar amount (1 mol%) of two (Mg2+ and Sr2+) or three ions (Mn2+, Mg2+, and Sr2+) were performed. A chemical, structural, and morphological characterization was carried out using X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The effects of the ion substitutions on the lattice parameters, crystallite sizes, and fractions of the detected phases were discussed. Multi-substituted (Mn2+, Mg2+, and Sr2+) scaffolds were coated with polycaprolactone (PCL) using simple vacuum impregnation. The differentiation of human mesenchymal stem cells (hMSCs), cultured on the PCL-coated scaffold, was evaluated using histology, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction analyses. The expression of collagen I, alkaline phosphatase, and dentin matrix protein 1 was detected. The influence of PCL coating on hMSCs behavior is discussed.

2.
Polymers (Basel) ; 15(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36987292

RESUMO

Production of biocompatible composite scaffolds shifts towards additive manufacturing where thermoplastic biodegradable polymers such as poly(lactic acid) (PLA) are used as matrices. Differences between industrial- and medical-grade polymers are often overlooked although they may affect properties and degradation behaviour as significantly as the filler addition. In the present research, composite films based on medical-grade PLA and biogenic hydroxyapatite (HAp) with 0, 10, and 20 wt.% of HAp were prepared by solvent casting technique. The degradation of composites incubated in phosphate-buffered saline solution (PBS) at 37 °C after 10 weeks showed that the higher HAp content slowed down the hydrolytic PLA degradation and improved its thermal stability. Morphological nonuniformity after degradation was indicated by the different glass transition temperatures (Tg) throughout the film. The Tg of the inner part of the sample decreased significantly faster compared with the outer part. The decrease was observed prior to the weight loss of composite samples.

3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674421

RESUMO

Silanized glass fibers are popular reinforcements of acrylic denture base materials. To increase the number of surface hydroxyl groups and to improve interfacial adhesion between the matrix and reinforcements, acid or base treatments of glass fibers are commonly performed before the silanization. However, limited data are available on the effect of these treatments on the mechanical properties of acrylic matrix composite materials used for denture base applications. In this work, before the silanization of a woven glass fiber fabric (GF) with 3-(trimethoxysilyl) propyl methacrylate, activation pretreatments using HCl and NH4OH aqueous solutions have been performed. To characterize the glass surface, FTIR spectroscopy was used. Specimens of cured acrylic denture base resin and composites were divided into five groups: (1) cured acrylic denture base resin-control group; (2) composite with non-silanized GF; (3) composite with silanized GF; (4) composite with NH4OH activated and silanized GF; (5) composite with HCl activated and silanized GF. The flexural and impact properties of specimens were evaluated by means of three-point-bending tests and Charpy impact testing, respectively. The residual reactivity of the samples was analyzed using differential scanning calorimetry. The results of mechanical testing showed that acid and base pretreatments of the glass fabric had a positive effect on the flexural modulus of prepared composites but a negative effect on their impact strength. Possible interfacial adhesion mechanisms and the diffusion control of isothermal cure reactions due to vitrification have been discussed.


Assuntos
Bases de Dentadura , Polimetil Metacrilato , Polimetil Metacrilato/química , Teste de Materiais , Análise de Variância , Vidro/química , Resinas Acrílicas/química , Propriedades de Superfície , Estresse Mecânico
4.
Materials (Basel) ; 15(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35591682

RESUMO

Increasing attention is focused on developing biomaterials as temporary scaffolds that provide a specific environment and microstructure for bone tissue regeneration. The aim of the present work was to synthesize silicon-doped biomimetic multi-phase composite scaffolds based on bioactive inorganic phases and biocompatible polymers (poly(ε-caprolactone), PCL) using simple and inexpensive methods. Porous multi-phase composite scaffolds from cuttlefish bone were synthesized using a hydrothermal method and were further impregnated with (3-aminopropyl)triethoxysilane 1-4 times, heat-treated (1000 °C) and coated with PCL. The effect of silicon doping and the PCL coating on the microstructure and mechanical and biological properties of the scaffolds has been investigated. Multi-phase scaffolds based on calcium phosphate (hydroxyapatite, α-tricalcium phosphate, ß-tricalcium phosphate) and calcium silicate (wollastonite, larnite, dicalcium silicate) phases were obtained. Elemental mapping revealed homogeneously dispersed silicon throughout the scaffolds, whereas silicon doping increased bovine serum albumin protein adsorption. The highly porous structure of cuttlefish bone was preserved with a composite scaffold porosity of ~78%. A compressive strength of ~1.4 MPa makes the obtained composite scaffolds appropriate for non-load-bearing applications. Cytocompatibility assessment by an MTT assay of human mesenchymal stem cells revealed the non-cytotoxicity of the obtained scaffolds.

5.
Materials (Basel) ; 14(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34442926

RESUMO

Ionic substitutions within the hydroxyapatite lattice are a widely used approach to mimic the chemical composition of the bone mineral. In this work, Sr-substituted and Mg- and Sr-co-substituted calcium phosphate (CaP) scaffolds, with various levels of strontium and magnesium substitution, were prepared using the hydrothermal method at 200 °C. Calcium carbonate skeletons of cuttlefish bone, ammonium dihydrogenphosphate (NH4H2PO4), strontium nitrate (Sr(NO3)2), and magnesium perchlorate (Mg(ClO4)2) were used as reagents. Materials were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Whole powder pattern decomposition refinements of XRD data indicated that increased magnesium content in the Mg- and Sr-co-substituted scaffolds was related to an increased proportion of the whitlockite (WH) phase in the biphasic hydroxyapatite (HAp)/WH scaffolds. In addition, refinements indicate that Sr2+ ions have replaced Ca2+ sites in the WH phase. Furthermore, PCL-coated Mg-substituted and Sr- and Mg-co-substituted scaffolds, with the HAp:WH wt. ratio of 90:10 were prepared by vacuum impregnation. Results of compression tests showed a positive impact of the WH phase and PCL coating on the mechanical properties of scaffolds. Human mesenchymal stem cells (hMSCs) were cultured on composite scaffolds in an osteogenic medium for 21 days. Immunohistochemical staining showed that Mg-Sr-CaP/PCL scaffold exhibited higher expression of collagen type I than the Mg-CaP/PCL scaffold, indicating the positive effect of Sr2+ ions on the differentiation of hMSCs, in concordance with histology results. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis confirmed an early stage of osteogenic differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...