Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Atmos ; 121(23): 14188-14200, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-28261536

RESUMO

Methane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (Facility for Airborne Atmospheric Measurements) and a ship (Helmer Hansen) during the Summer 2014 and for Zeppelin Observatory for the full year. We present a model-supported analysis of the atmospheric CH4 mixing ratios measured by the different platforms. To address uncertainty about where CH4 emissions actually occur, we explored three scenarios: areas with known seeps, a hydrate stability model, and an ocean depth criterion. We then used a budget analysis and a Lagrangian particle dispersion model to compare measurements taken upwind and downwind of the potential CH4 emission areas. We found small differences between the CH4 mixing ratios measured upwind and downwind of the potential emission areas during the campaign. By taking into account measurement and sampling uncertainties and by determining the sensitivity of the measured mixing ratios to potential oceanic emissions, we provide upper limits for the CH4 fluxes. The CH4 flux during the campaign was small, with an upper limit of 2.5 nmol m-2 s-1 in the stability model scenario. The Zeppelin Observatory data for 2014 suggest CH4 fluxes from the Svalbard continental platform below 0.2 Tg yr-1. All estimates are in the lower range of values previously reported.

2.
J Geophys Res Atmos ; 121(23): 14257-14270, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31413935

RESUMO

A stratified air mass enriched in methane (CH4) was sampled at ~600 m to ~2000 m altitude, between the north coast of Norway and Svalbard as part of the Methane in the Arctic: Measurements and Modelling campaign on board the UK's BAe-146-301 Atmospheric Research Aircraft. The approach used here, which combines interpretation of multiple tracers with transport modeling, enables better understanding of the emission sources that contribute to the background mixing ratios of CH4 in the Arctic. Importantly, it allows constraints to be placed on the location and isotopic bulk signature of the emission source(s). Measurements of δ13C in CH4 in whole air samples taken while traversing the air mass identified that the source(s) had a strongly depleted bulk δ13C CH4 isotopic signature of -70 (±2.1)‰. Combined Numerical Atmospheric-dispersion Modeling Environment and inventory analysis indicates that the air mass was recently in the planetary boundary layer over northwest Russia and the Barents Sea, with the likely dominant source of methane being from wetlands in that region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...