Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 18(40): 7773-7781, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36177986

RESUMO

Aiming at a new type of salt-free CASAIL (Catanionic Surface Active IL) for electrochemical applications or emulsifiers, dispersants, and foaming or antifoaming agents, we combined mesogenic anions (carboxylate) and cations (imidazolium) of similar shape and size to synthesize a series of congruent ion pairs of 1-alkyl-3-methylimidazolium alkylcarboxylates [Cnmim][Cm-1COO] (n = 10-16, m = 10-16). With particular focus on alkyl chain length varieties in both, imidazolium cations and carboxylate anions (n/m), the self-assembly in the bulk phase and in solution was investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), X-ray diffraction (XRD) experiments and surface tension measurements. Our results revealed that the presence of long alkyl chains on both the cation n and anion m leads to improved thermal stability of the bulk material while maintaining broad lamellar (SmA) mesophases. In water, we observed a strong and linear decrease of log(cmc) for increasing both the carboxylate anion and imidazolium cation chain length due to the increasing hydrophobic effect. Surprisingly, for both thermotropic behavior and micellization, the chain length of the carboxylate anion had a stronger impact than the chain length of the imidazolium cation, indicating its greater surface activity and tendency to form micelles.

2.
J Phys Chem B ; 125(12): 3197-3207, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33724852

RESUMO

Mesoporous silica materials (MSMs) produced by true liquid crystal templating (TLCT) are often considered as direct inverted replicas of the initial lyotropic liquid crystal (LLC) phase. However, the predictive design of tailor-made MSMs requires the full knowledge of the TLCT process, which is still incomplete. Here, we tackle this issue by monitoring the structural evolution during the templating process by small-angle X-ray scattering, showing that after the addition of the silica source the reaction mixture is first isotropic and then an intermediary liquid crystal phase appears, which is the key to the success of the templating process, namely the formation of ordered MSMs. We analyze the structure and the formation dynamics of this intermediary phase and present a simple theoretical model, which allows us to connect the structural parameters of the initial LLC and the MSM. These results provide an enhanced understanding of the TLCT process and are an important step toward the predictable synthesis of new MSMs in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...