Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biogeochemistry ; 158(1): 39-72, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221401

RESUMO

Sustainable forest management requires understanding of ecosystem phosphorus (P) cycling. Lang et al. (2017) [Biogeochemistry, https://doi.org/10.1007/s10533-017-0375-0] introduced the concept of P-acquiring vs. P-recycling nutrition strategies for European beech (Fagus sylvatica L.) forests on silicate parent material, and demonstrated a change from P-acquiring to P-recycling nutrition from P-rich to P-poor sites. The present study extends this silicate rock-based assessment to forest sites with soils formed from carbonate bedrock. For all sites, it presents a large set of general soil and bedrock chemistry data. It thoroughly describes the soil P status and generates a comprehensive concept on forest ecosystem P nutrition covering the majority of Central European forest soils. For this purpose, an Ecosystem P Nutrition Index (ENI P ) was developed, which enabled the comparison of forest P nutrition strategies at the carbonate sites in our study among each other and also with those of the silicate sites investigated by Lang et al. (2017). The P status of forest soils on carbonate substrates was characterized by low soil P stocks and a large fraction of organic Ca-bound P (probably largely Ca phytate) during early stages of pedogenesis. Soil P stocks, particularly those in the mineral soil and of inorganic P forms, including Al- and Fe-bound P, became more abundant with progressing pedogenesis and accumulation of carbonate rock dissolution residue. Phosphorus-rich impure, silicate-enriched carbonate bedrock promoted the accumulation of dissolution residue and supported larger soil P stocks, mainly bound to Fe and Al minerals. In carbonate-derived soils, only low P amounts were bioavailable during early stages of pedogenesis, and, similar to P-poor silicate sites, P nutrition of beech forests depended on tight (re)cycling of P bound in forest floor soil organic matter (SOM). In contrast to P-poor silicate sites, where the ecosystem P nutrition strategy is direct biotic recycling of SOM-bound organic P, recycling during early stages of pedogenesis on carbonate substrates also involves the dissolution of stable Ca-Porg precipitates formed from phosphate released during SOM decomposition. In contrast to silicate sites, progressing pedogenesis and accumulation of P-enriched carbonate bedrock dissolution residue at the carbonate sites promote again P-acquiring mechanisms for ecosystem P nutrition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10533-021-00884-7.

2.
PLoS One ; 16(6): e0252032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34077440

RESUMO

Bioturbation involves the incorporation of residues from the surface soil into the subsoil; however, common small soil 'bioengineers', such as earthworms or termites, are unlikely to transport human artifacts to deeper soil horizons. However, such artifacts occur in the deeper soil horizons within Amazonian Anthrosols (Terra Preta). Here we test the assumption that such tasks could be carried out by fly larvae, which could thus play a crucial role in waste decomposition and associated soil mixing under tropical conditions. We performed two greenhouse experiments with sandy substrate covered with layers of organic waste, ceramic fragments, and black soldier fly larvae (BSFL) (Hermetia illucens (L.) (Dipt.: Stratiomyidae)). We used in-situ images to assess the rate of bioturbation by BSFL, and then designed our main study to observe waste dissipation (reduction of organic carbon and phosphorus contents from waste model trials with and without charcoal) as related to larval-induced changes in soil properties. We found that the bioturbation of macroinvertebrates like BSFL was able to bury even large (> 5 cm) ceramic fragments within hours, which coincided with high soil growth rates (0.5 cm h-1). The sandy soil was subsequently heavily enriched with organic matter and phosphorus originating from organic waste. We conclude that BSFL, and possibly other fly species, are important, previously overlooked soil 'bioengineers', which may even contribute to the burial of artifacts in Anthrosols and other terrestrial waste dumps.


Assuntos
Cerâmica/química , Compostagem/métodos , Dípteros/fisiologia , Larva/fisiologia , Solo/química , Gerenciamento de Resíduos/métodos , Animais , Humanos
3.
New Phytol ; 230(5): 1883-1895, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33638193

RESUMO

Understanding P uptake in soil-plant systems requires suitable P tracers. The stable oxygen isotope ratio in phosphate (expressed as δ18 OP ) is an alternative to radioactive labelling, but the degree to which plants preserve the δ18 OP value of the P source is unclear. We hypothesised that the source signal will be preserved in roots rather than shoots. In soil and hydroponic experiments with spring wheat (Triticum aestivum), we replaced irrigation water by 18 O-labelled water for up to 10 d. We extracted plant inorganic phosphates with trichloroacetic acid (TCA), assessed temporal dynamics of δ18 OTCA-P values after changing to 18 O-labelled water and combined the results with a mathematical model. Within 1 wk, full equilibration of δ18 OTCA-P values with the isotope value of the water in the growth medium occurred in shoots but not in roots. Model results further indicated that root δ18 OTCA-P values were affected by back transport of phosphate from shoots to roots, with a greater contribution of source P at higher temperatures when back transport was reduced. Root δ18 OTCA-P partially preserved the source signal, providing an indicator of P uptake sources. This now needs to be tested extensively for different species, soil and climate conditions to enable application in future ecosystem studies.


Assuntos
Fósforo , Triticum , Ecossistema , Modelos Teóricos , Isótopos de Oxigênio/análise , Raízes de Plantas/química , Solo
4.
Sci Rep ; 8(1): 13900, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224656

RESUMO

Subsoil organic carbon (OC) is generally lower in content and more heterogeneous than topsoil OC, rendering it difficult to detect significant differences in subsoil OC storage. We tested the application of laboratory hyperspectral imaging with a variety of machine learning approaches to predict OC distribution in undisturbed soil cores. Using a bias-corrected random forest we were able to reproduce the OC distribution in the soil cores with very good to excellent model goodness-of-fit, enabling us to map the spatial distribution of OC in the soil cores at very high resolution (~53 × 53 µm). Despite a large increase in variance and reduction in OC content with increasing depth, the high resolution of the images enabled statistically powerful analysis in spatial distribution of OC in the soil cores. In contrast to the relatively homogeneous distribution of OC in the plough horizon, the subsoil was characterized by distinct regions of OC enrichment and depletion, including biopores which contained ~2-10 times higher SOC contents than the soil matrix in close proximity. Laboratory hyperspectral imaging enables powerful, fine-scale investigations of the vertical distribution of soil OC as well as hotspots of OC storage in undisturbed samples, overcoming limitations of traditional soil sampling campaigns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...