Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 16(1): 76-86, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25423040

RESUMO

The drying dynamics of protein coatings is of importance for many applications. The main focus of research so far was to investigate macroscopic properties of protein coatings, leaving drying dynamics virtually unexplored. A unique combination of techniques is used to monitor drying of a coating containing the protein ß-lactoglobulin. The techniques used cover both macroscopic and microscopic aspects of the drying process. For all water fractions amenable to diffusing wave spectroscopy analysis (xw > 0.2 w/w), the tracer particles diffuse in the coating as in a Newtonian viscous medium. Magnetic resonance imaging shows both protein and water are distributed homogeneously over the coating during drying, up to water fractions above 0.2 w/w. When drying continues to lower water fractions, sudden transitions in drying behavior are observed by both dynamic vapor sorption and IR spectroscopy, which we suggest are due to changes in molecular interactions caused by dehydration of the protein backbone.


Assuntos
Química Farmacêutica/métodos , Materiais Revestidos Biocompatíveis/síntese química , Dessecação/métodos , Lactoglobulinas/química , Animais , Bovinos , Lactoglobulinas/análise , Fatores de Tempo
2.
J Magn Reson ; 214(1): 227-36, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22169437

RESUMO

High spatial resolution NMR imaging techniques have been developed recently to measure the spatial inhomogeneity of a polymer coating film. However, the substrates of the polymer coatings for such experiments are generally required to be non-metallic, because metals can interact with static magnetic fields B(0) and RF fields B(1) giving rise to artifacts in NMR images. In this paper we present a systematic study on the effects of metallic substrates on 1D profiles obtained by high resolution NMR imaging. The off-resonance effect is discussed in detail in terms of the excitation profile of the RF pulses. We quantitatively show how the NMR signal intensities change with frequency offset at different RF pulse lengths. The complete NMR profiles were simulated using a Finite Element Analysis method by fully considering the inhomogeneities in both B(1) and B(0). The excellent agreement between the calculated and measured NMR profiles on both metallic and non-metallic substrates indicates that the experimental NMR profiles can be reproduced very well by numerical simulations. The metallic substrates can disturb the RF field of the coil by eddy current effect and therefore change the NMR profiles. To quantitatively interpret the NMR profile of a polymer layer on a metallic substrate, the profile has to be divided by the profile of a reference on the same metallic substrate located at the same distance from the coil.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metais/química , Polímeros/análise , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...