Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Youth Adolesc ; 53(6): 1341-1354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499821

RESUMO

Processing and learning from affective cues to guide goal-directed behavior may be particularly important during adolescence; yet the factors that promote and/or disrupt the ability to integrate value in order to guide decision making across development remain unclear. The present study (N = 1046) assessed individual difference factors (self-reported punishment and reward sensitivity) related to whether previously-rewarded and previously-punished cues differentially impact goal-directed behavior (response inhibition) in a large developmental sample. Participants were between the ages of 8-21 years (Mage = 14.29, SD = 3.97, 50.38% female). Previously-rewarded cues improved response inhibition among participants age 14 and older. Further, punishment sensitivity predicted overall improved response inhibition among participants aged 10 to 18. The results highlight two main factors that are associated with improvements in the ability to integrate value to guide goal-directed behaviour - cues in the environment (e.g., reward-laden cues) and individual differences in punishment sensitivity. These findings have implications for both educational and social policies aimed at characterizing the ways in which youth integrate value to guide decision making.


Assuntos
Sinais (Psicologia) , Inibição Psicológica , Punição , Recompensa , Humanos , Punição/psicologia , Adolescente , Feminino , Masculino , Adulto Jovem , Criança , Comportamento do Adolescente/psicologia , Tomada de Decisões , Desenvolvimento do Adolescente , Objetivos
2.
Clin Orthop Relat Res ; 481(3): 580-588, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36083847

RESUMO

BACKGROUND: Missed fractures are the most common diagnostic errors in musculoskeletal imaging and can result in treatment delays and preventable morbidity. Deep learning, a subfield of artificial intelligence, can be used to accurately detect fractures by training algorithms to emulate the judgments of expert clinicians. Deep learning systems that detect fractures are often limited to specific anatomic regions and require regulatory approval to be used in practice. Once these hurdles are overcome, deep learning systems have the potential to improve clinician diagnostic accuracy and patient care. QUESTIONS/PURPOSES: This study aimed to evaluate whether a Food and Drug Administration-cleared deep learning system that identifies fractures in adult musculoskeletal radiographs would improve diagnostic accuracy for fracture detection across different types of clinicians. Specifically, this study asked: (1) What are the trends in musculoskeletal radiograph interpretation by different clinician types in the publicly available Medicare claims data? (2) Does the deep learning system improve clinician accuracy in diagnosing fractures on radiographs and, if so, is there a greater benefit for clinicians with limited training in musculoskeletal imaging? METHODS: We used the publicly available Medicare Part B Physician/Supplier Procedure Summary data provided by the Centers for Medicare & Medicaid Services to determine the trends in musculoskeletal radiograph interpretation by clinician type. In addition, we conducted a multiple-reader, multiple-case study to assess whether clinician accuracy in diagnosing fractures on radiographs was superior when aided by the deep learning system compared with when unaided. Twenty-four clinicians (radiologists, orthopaedic surgeons, physician assistants, primary care physicians, and emergency medicine physicians) with a median (range) of 16 years (2 to 37) of experience postresidency each assessed 175 unique musculoskeletal radiographic cases under aided and unaided conditions (4200 total case-physician pairs per condition). These cases were comprised of radiographs from 12 different anatomic regions (ankle, clavicle, elbow, femur, forearm, hip, humerus, knee, pelvis, shoulder, tibia and fibula, and wrist) and were randomly selected from 12 hospitals and healthcare centers. The gold standard for fracture diagnosis was the majority opinion of three US board-certified orthopaedic surgeons or radiologists who independently interpreted the case. The clinicians' diagnostic accuracy was determined by the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, sensitivity, and specificity. Secondary analyses evaluated the fracture miss rate (1-sensitivity) by clinicians with and without extensive training in musculoskeletal imaging. RESULTS: Medicare claims data revealed that physician assistants showed the greatest increase in interpretation of musculoskeletal radiographs within the analyzed time period (2012 to 2018), although clinicians with extensive training in imaging (radiologists and orthopaedic surgeons) still interpreted the majority of the musculoskeletal radiographs. Clinicians aided by the deep learning system had higher accuracy diagnosing fractures in radiographs compared with when unaided (unaided AUC: 0.90 [95% CI 0.89 to 0.92]; aided AUC: 0.94 [95% CI 0.93 to 0.95]; difference in least square mean per the Dorfman, Berbaum, Metz model AUC: 0.04 [95% CI 0.01 to 0.07]; p < 0.01). Clinician sensitivity increased when aided compared with when unaided (aided: 90% [95% CI 88% to 92%]; unaided: 82% [95% CI 79% to 84%]), and specificity increased when aided compared with when unaided (aided: 92% [95% CI 91% to 93%]; unaided: 89% [95% CI 88% to 90%]). Clinicians with limited training in musculoskeletal imaging missed a higher percentage of fractures when unaided compared with radiologists (miss rate for clinicians with limited imaging training: 20% [95% CI 17% to 24%]; miss rate for radiologists: 14% [95% CI 9% to 19%]). However, when assisted by the deep learning system, clinicians with limited training in musculoskeletal imaging reduced their fracture miss rate, resulting in a similar miss rate to radiologists (miss rate for clinicians with limited imaging training: 9% [95% CI 7% to 12%]; miss rate for radiologists: 10% [95% CI 6% to 15%]). CONCLUSION: Clinicians were more accurate at diagnosing fractures when aided by the deep learning system, particularly those clinicians with limited training in musculoskeletal image interpretation. Reducing the number of missed fractures may allow for improved patient care and increased patient mobility. LEVEL OF EVIDENCE: Level III, diagnostic study.


Assuntos
Aprendizado Profundo , Fraturas Ósseas , Idoso , Estados Unidos , Adulto , Humanos , Inteligência Artificial , Medicare , Fraturas Ósseas/diagnóstico por imagem , Radiografia , Sensibilidade e Especificidade , Estudos Retrospectivos
3.
Artigo em Inglês | MEDLINE | ID: mdl-39006919

RESUMO

Growing evidence indicates that brain development varies as a function of family socioeconomic status (SES). Numerous studies have demonstrated that children from low-SES backgrounds have thinner cortex than children from higher-SES backgrounds. A recent study in a large developmental sample found widespread associations between lower SES and greater cortical T1w/T2w ratio-thought to be an indirect proxy for cortical myelin. We evaluated the association of family income with cortical T1w/T2w ratio as a function of age in the Human Connectome Project in Development sample of 989 youth aged 8-21 years. We observed no associations between family income and T1w/T2w ratio that were significant after corrections for multiple comparisons at the region, network, or whole-brain level. Region of practical equivalence (ROPE) analyses were also consistent with the absence of an association between family income and T1w/T2w ratio. We discuss potential methodological sources of inconsistency between this and the previous study examining the same question. While the question of whether family income may influence cortical myelin development remains, these null results may indicate that the association between SES and cortical myelin development may not be as strong as with other aspects of brain structure.

4.
Dev Cogn Neurosci ; 57: 101145, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35944340

RESUMO

The human cerebral cortex undergoes considerable changes during development, with cortical maturation patterns reflecting regional heterogeneity that generally progresses in a posterior-to-anterior fashion. However, the organizing principles that govern cortical development remain unclear. In the current study, we characterized age-related differences in cortical thickness (CT) as a function of sex, pubertal timing, and two dissociable indices of socioeconomic status (i.e., income-to-needs and maternal education) in the context of functional brain network organization, using a cross-sectional sample (n = 789) diverse in race, ethnicity, and socioeconomic status from the Lifespan Human Connectome Project in Development (HCP-D). We found that CT generally followed a linear decline from 5 to 21 years of age, except for three functional networks that displayed nonlinear trajectories. We found no main effect of sex or age by sex interaction for any network. Earlier pubertal timing was associated with reduced mean CT and CT in seven networks. We also found a significant age by maternal education interaction for mean CT across cortex and CT in the dorsal attention network, where higher levels of maternal education were associated with steeper age-related decreases in CT. Taken together, our results suggest that these biological and environmental variations may impact the emerging functional connectome.

5.
Neuroimage ; 258: 119360, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35697132

RESUMO

T1-weighted divided by T2-weighted (T1w/T2w) myelin maps were initially developed for neuroanatomical analyses such as identifying cortical areas, but they are increasingly used in statistical comparisons across individuals and groups with other variables of interest. Existing T1w/T2w myelin maps contain radiofrequency transmit field (B1+) biases, which may be correlated with these variables of interest, leading to potentially spurious results. Here we propose two empirical methods for correcting these transmit field biases using either explicit measures of the transmit field or alternatively a 'pseudo-transmit' approach that is highly correlated with the transmit field at 3T. We find that the resulting corrected T1w/T2w myelin maps are both better neuroanatomical measures (e.g., for use in cross-species comparisons), and more appropriate for statistical comparisons of relative T1w/T2w differences across individuals and groups (e.g., sex, age, or body-mass-index) within a consistently acquired study at 3T. We recommend that investigators who use the T1w/T2w approach for mapping cortical myelin use these B1+ transmit field corrected myelin maps going forward.


Assuntos
Imageamento por Ressonância Magnética , Bainha de Mielina , Viés , Humanos , Imageamento por Ressonância Magnética/métodos
6.
J Neurosci ; 42(29): 5681-5694, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35705486

RESUMO

Adolescence is characterized by the maturation of cortical microstructure and connectivity supporting complex cognition and behavior. Axonal myelination influences brain connectivity during development by enhancing neural signaling speed and inhibiting plasticity. However, the maturational timing of cortical myelination during human adolescence remains poorly understood. Here, we take advantage of recent advances in high-resolution cortical T1w/T2w mapping methods, including principled correction of B1+ transmit field effects, using data from the Human Connectome Project in Development (HCP-D; N = 628, ages 8-21). We characterize microstructural changes relevant to myelination by estimating age-related differences in T1w/T2w throughout the cerebral neocortex from childhood to early adulthood. We apply Bayesian spline models and clustering analysis to demonstrate graded variation in age-dependent cortical T1w/T2w differences that are correlated with the sensorimotor-association (S-A) axis of cortical organization reported by others. In sensorimotor areas, T1w/T2w ratio measures start at high levels at early ages, increase at a fast pace, and decelerate at later ages (18-21). In intermediate multimodal areas along the S-A axis, T1w/T2w starts at intermediate levels and increases linearly at an intermediate pace. In transmodal/paralimbic association areas, T1w/T2w starts at low levels and increases linearly at the slowest pace. These data provide evidence for graded variation of the T1w/T2w ratio along the S-A axis that may reflect cortical myelination changes during adolescence underlying the development of complex information processing and psychological functioning. We discuss the implications of these results as well as caveats in interpreting magnetic resonance imaging (MRI)-based estimates of myelination.SIGNIFICANCE STATEMENT Myelin is a lipid membrane that is essential to healthy brain function. Myelin wraps axons to increase neural signaling speed, enabling complex neuronal functioning underlying learning and cognition. Here, we characterize the developmental timing of myelination across the cerebral cortex during adolescence using a noninvasive proxy measure, T1w/T2w mapping. Our results provide new evidence demonstrating graded variation across the cortex in the timing of T1w/T2w changes during adolescence, with rapid T1w/T2w increases in lower-order sensory areas and gradual T1w/T2w increases in higher-order association areas. This spatial pattern of microstructural brain development closely parallels the sensorimotor-to-association axis of cortical organization and plasticity during ontogeny.


Assuntos
Conectoma , Neocórtex , Adolescente , Adulto , Teorema de Bayes , Criança , Humanos , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina , Adulto Jovem
7.
Netw Neurosci ; 6(1): 234-274, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36605887

RESUMO

In systems neuroscience, most models posit that brain regions communicate information under constraints of efficiency. Yet, evidence for efficient communication in structural brain networks characterized by hierarchical organization and highly connected hubs remains sparse. The principle of efficient coding proposes that the brain transmits maximal information in a metabolically economical or compressed form to improve future behavior. To determine how structural connectivity supports efficient coding, we develop a theory specifying minimum rates of message transmission between brain regions to achieve an expected fidelity, and we test five predictions from the theory based on random walk communication dynamics. In doing so, we introduce the metric of compression efficiency, which quantifies the trade-off between lossy compression and transmission fidelity in structural networks. In a large sample of youth (n = 1,042; age 8-23 years), we analyze structural networks derived from diffusion-weighted imaging and metabolic expenditure operationalized using cerebral blood flow. We show that structural networks strike compression efficiency trade-offs consistent with theoretical predictions. We find that compression efficiency prioritizes fidelity with development, heightens when metabolic resources and myelination guide communication, explains advantages of hierarchical organization, links higher input fidelity to disproportionate areal expansion, and shows that hubs integrate information by lossy compression. Lastly, compression efficiency is predictive of behavior-beyond the conventional network efficiency metric-for cognitive domains including executive function, memory, complex reasoning, and social cognition. Our findings elucidate how macroscale connectivity supports efficient coding and serve to foreground communication processes that utilize random walk dynamics constrained by network connectivity.

8.
Phys Rev E ; 101(6-1): 062301, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688528

RESUMO

The human brain is composed of distinct regions that are each associated with particular functions and distinct propensities for the control of neural dynamics. However, the relation between these functions and control profiles is poorly understood, as is the variation in this relation across diverse scales of space and time. Here we probe the relation between control and dynamics in brain networks constructed from diffusion tensor imaging data in a large community sample of young adults. Specifically, we probe the control properties of each brain region and investigate their relationship with dynamics across various spatial scales using the Laplacian eigenspectrum. In addition, through analysis of regional modal controllability and partitioning of modes, we determine whether the associated dynamics are fast or slow, as well as whether they are alternating or monotone. We find that brain regions that facilitate the control of energetically easy transitions are associated with activity on short length scales and slow timescales. Conversely, brain regions that facilitate control of difficult transitions are associated with activity on long length scales and fast timescales. Built on linear dynamical models, our results offer parsimonious explanations for the activity propagation and network control profiles supported by regions of differing neuroanatomical structure.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Modelos Neurológicos , Rede Nervosa/citologia , Rede Nervosa/diagnóstico por imagem , Neurônios/citologia
9.
Dev Cogn Neurosci ; 43: 100788, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32510347

RESUMO

Diffusion weighted imaging (DWI) has advanced our understanding of brain microstructure evolution over development. Recently, the use of multi-shell diffusion imaging sequences has coincided with advances in modeling the diffusion signal, such as Neurite Orientation Dispersion and Density Imaging (NODDI) and Laplacian-regularized Mean Apparent Propagator MRI (MAPL). However, the relative utility of recently-developed diffusion models for understanding brain maturation remains sparsely investigated. Additionally, despite evidence that motion artifact is a major confound for studies of development, the vulnerability of metrics derived from contemporary models to in-scanner motion has not been described. Accordingly, in a sample of 120 youth and young adults (ages 12-30) we evaluated metrics derived from diffusion tensor imaging (DTI), NODDI, and MAPL for associations with age and in-scanner head motion at multiple scales. Specifically, we examined mean white matter values, white matter tracts, white matter voxels, and connections in structural brain networks. Our results revealed that multi-shell diffusion imaging data can be leveraged to robustly characterize neurodevelopment, and demonstrate stronger age effects than equivalent single-shell data. Additionally, MAPL-derived metrics were less sensitive to the confounding effects of head motion. Our findings suggest that multi-shell imaging data and contemporary modeling techniques confer important advantages for studies of neurodevelopment.


Assuntos
Encéfalo/crescimento & desenvolvimento , Imagem de Tensor de Difusão/métodos , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Adulto Jovem
10.
Commun Biol ; 3(1): 261, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444827

RESUMO

A diverse set of white matter connections supports seamless transitions between cognitive states. However, it remains unclear how these connections guide the temporal progression of large-scale brain activity patterns in different cognitive states. Here, we analyze the brain's trajectories across a set of single time point activity patterns from functional magnetic resonance imaging data acquired during the resting state and an n-back working memory task. We find that specific temporal sequences of brain activity are modulated by cognitive load, associated with age, and related to task performance. Using diffusion-weighted imaging acquired from the same subjects, we apply tools from network control theory to show that linear spread of activity along white matter connections constrains the probabilities of these sequences at rest, while stimulus-driven visual inputs explain the sequences observed during the n-back task. Overall, these results elucidate the structural underpinnings of cognitively and developmentally relevant spatiotemporal brain dynamics.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Descanso/fisiologia , Substância Branca/química , Adolescente , Adulto , Mapeamento Encefálico , Criança , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Substância Branca/fisiologia , Adulto Jovem
11.
Elife ; 92020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32216874

RESUMO

Executive function develops during adolescence, yet it remains unknown how structural brain networks mature to facilitate activation of the fronto-parietal system, which is critical for executive function. In a sample of 946 human youths (ages 8-23y) who completed diffusion imaging, we capitalized upon recent advances in linear dynamical network control theory to calculate the energetic cost necessary to activate the fronto-parietal system through the control of multiple brain regions given existing structural network topology. We found that the energy required to activate the fronto-parietal system declined with development, and the pattern of regional energetic cost predicts unseen individuals' brain maturity. Finally, energetic requirements of the cingulate cortex were negatively correlated with executive performance, and partially mediated the development of executive performance with age. Our results reveal a mechanism by which structural networks develop during adolescence to reduce the theoretical energetic costs of transitions to activation states necessary for executive function.


Adolescents are known for taking risks, from driving too fast to experimenting with drugs and alcohol. Such behaviors tend to decrease as individuals move into adulthood. Most people in their mid-twenties have greater self-control than they did as teenagers. They are also often better at planning, sustaining attention, and inhibiting impulsive behaviors. These skills, which are known as executive functions, develop over the course of adolescence. Executive functions rely upon a series of brain regions distributed across the frontal lobe and the lobe that sits just behind it, the parietal lobe. Fiber tracts connect these regions to form a fronto-parietal network. These fiber tracts are also referred to as white matter due to the whitish fatty material that surrounds and insulates them. Cui et al. now show that changes in white matter networks have implications for teen behavior. Almost 950 healthy young people aged between 8 and 23 years underwent a type of brain scan called diffusion-weighted imaging that visualizes white matter. The scans revealed that white matter networks in the frontal and parietal lobes mature over adolescence. This makes it easier for individuals to activate their fronto-parietal networks by decreasing the amount of energy required. Cui et al. show that a computer model can predict the maturity of a person's brain based on the energy needed to activate their fronto-parietal networks. These changes help explain why executive functions improve during adolescence. This in turn explains why behaviors such as risk-taking tend to decrease with age. That said, adults with various psychiatric disorders, such as ADHD and psychosis, often show impaired executive functions. In the future, it may be possible to reduce these impairments by applying magnetic fields to the scalp to reduce the activity of specific brain regions. The techniques used in the current study could help reveal which brain regions to target with this approach.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Função Executiva/fisiologia , Vias Neurais/fisiologia , Adolescente , Mapeamento Encefálico/métodos , Criança , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
12.
Neuron ; 106(2): 340-353.e8, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32078800

RESUMO

The spatial distribution of large-scale functional networks on the cerebral cortex differs between individuals and is particularly variable in association networks that are responsible for higher-order cognition. However, it remains unknown how this functional topography evolves in development and supports cognition. Capitalizing on advances in machine learning and a large sample imaged with 27 min of high-quality functional MRI (fMRI) data (n = 693, ages 8-23 years), we delineate how functional topography evolves during youth. We found that the functional topography of association networks is refined with age, allowing accurate prediction of unseen individuals' brain maturity. The cortical representation of association networks predicts individual differences in executive function. Finally, variability of functional topography is associated with fundamental properties of brain organization, including evolutionary expansion, cortical myelination, and cerebral blood flow. Our results emphasize the importance of considering the plasticity and diversity of functional neuroanatomy during development and suggest advances in personalized therapeutics.


Assuntos
Rede Nervosa/anatomia & histologia , Adolescente , Envelhecimento , Atenção/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Circulação Cerebrovascular , Criança , Estudos de Coortes , Conectoma , Função Executiva , Feminino , Humanos , Individualidade , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Bainha de Mielina/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Adulto Jovem
13.
Proc Natl Acad Sci U S A ; 117(1): 771-778, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31874926

RESUMO

The protracted development of structural and functional brain connectivity within distributed association networks coincides with improvements in higher-order cognitive processes such as executive function. However, it remains unclear how white-matter architecture develops during youth to directly support coordinated neural activity. Here, we characterize the development of structure-function coupling using diffusion-weighted imaging and n-back functional MRI data in a sample of 727 individuals (ages 8 to 23 y). We found that spatial variability in structure-function coupling aligned with cortical hierarchies of functional specialization and evolutionary expansion. Furthermore, hierarchy-dependent age effects on structure-function coupling localized to transmodal cortex in both cross-sectional data and a subset of participants with longitudinal data (n = 294). Moreover, structure-function coupling in rostrolateral prefrontal cortex was associated with executive performance and partially mediated age-related improvements in executive function. Together, these findings delineate a critical dimension of adolescent brain development, whereby the coupling between structural and functional connectivity remodels to support functional specialization and cognition.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Cognição/fisiologia , Função Executiva/fisiologia , Rede Nervosa/fisiologia , Adolescente , Córtex Cerebral/diagnóstico por imagem , Criança , Conectoma , Estudos Transversais , Imagem de Tensor de Difusão , Feminino , Humanos , Estudos Longitudinais , Masculino , Análise Espacial , Adulto Jovem
14.
Neuroimage ; 199: 93-104, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141738

RESUMO

The brain can be considered as an information processing network, where complex behavior manifests as a result of communication between large-scale functional systems such as visual and default mode networks. As the communication between brain regions occurs through underlying anatomical pathways, it is important to define a "traffic pattern" that properly describes how the regions exchange information. Empirically, the choice of the traffic pattern can be made based on how well the functional connectivity between regions matches the structural pathways equipped with that traffic pattern. In this paper, we present a multimodal connectomics paradigm utilizing graph matching to measure similarity between structural and functional connectomes (derived from dMRI and fMRI data) at node, system, and connectome level. Through an investigation of the brain's structure-function relationship over a large cohort of 641 healthy developmental participants aged 8-22 years, we demonstrate that communicability as the traffic pattern describes the functional connectivity of the brain best, with large-scale systems having significant agreement between their structural and functional connectivity patterns. Notably, matching between structural and functional connectivity for the functionally specialized modular systems such as visual and motor networks are higher as compared to other more integrated systems. Additionally, we show that the negative functional connectivity between the default mode network (DMN) and motor, frontoparietal, attention, and visual networks is significantly associated with its underlying structural connectivity, highlighting the counterbalance between functional activation patterns of DMN and other systems. Finally, we investigated sex difference and developmental changes in brain and observed that similarity between structure and function changes with development.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Adolescente , Fatores Etários , Encéfalo/diagnóstico por imagem , Criança , Estudos Transversais , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Fatores Sexuais , Adulto Jovem
15.
Neuroimage ; 188: 122-134, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30508681

RESUMO

Executive function is a quintessential human capacity that emerges late in development and displays different developmental trends in males and females. Sex differences in executive function in youth have been linked to vulnerability to psychopathology as well as to behaviors that impinge on health, wellbeing, and longevity. Yet, the neurobiological basis of these differences is not well understood, in part due to the spatiotemporal complexity inherent in patterns of brain network maturation supporting executive function. Here we test the hypothesis that sex differences in impulsivity in youth stem from sex differences in the controllability of structural brain networks as they rewire over development. Combining methods from network neuroscience and network control theory, we characterize the network control properties of structural brain networks estimated from diffusion imaging data acquired in males and females in a sample of 879 youth aged 8-22 years. We summarize the control properties of these networks by estimating average and modal controllability, two statistics that probe the ease with which brain areas can drive the network towards easy versus difficult-to-reach states. We find that females have higher modal controllability in frontal, parietal, and subcortical regions while males have higher average controllability in frontal and subcortical regions. Furthermore, controllability profiles in males are negatively related to the false positive rate on a continuous performance task, a common measure of impulsivity. Finally, we find associations between average controllability and individual differences in activation during an n-back working memory task. Taken together, our findings support the notion that sex differences in the controllability of structural brain networks can partially explain sex differences in executive function. Controllability of structural brain networks also predicts features of task-relevant activation, suggesting the potential for controllability to represent context-specific constraints on network state more generally.


Assuntos
Encéfalo/fisiologia , Função Executiva/fisiologia , Comportamento Impulsivo/fisiologia , Modelos Neurológicos , Caracteres Sexuais , Adolescente , Criança , Feminino , Humanos , Masculino , Vias Neurais/fisiologia , Adulto Jovem
16.
Neuroimage ; 173: 275-286, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29486323

RESUMO

Multiple studies have shown that data quality is a critical confound in the construction of brain networks derived from functional MRI. This problem is particularly relevant for studies of human brain development where important variables (such as participant age) are correlated with data quality. Nevertheless, the impact of head motion on estimates of structural connectivity derived from diffusion tractography methods remains poorly characterized. Here, we evaluated the impact of in-scanner head motion on structural connectivity using a sample of 949 participants (ages 8-23 years old) who passed a rigorous quality assessment protocol for diffusion magnetic resonance imaging (dMRI) acquired as part of the Philadelphia Neurodevelopmental Cohort. Structural brain networks were constructed for each participant using both deterministic and probabilistic tractography. We hypothesized that subtle variation in head motion would systematically bias estimates of structural connectivity and confound developmental inference, as observed in previous studies of functional connectivity. Even following quality assurance and retrospective correction for head motion, eddy currents, and field distortions, in-scanner head motion significantly impacted the strength of structural connectivity in a consistency- and length-dependent manner. Specifically, increased head motion was associated with reduced estimates of structural connectivity for network edges with high inter-subject consistency, which included both short- and long-range connections. In contrast, motion inflated estimates of structural connectivity for low-consistency network edges that were primarily shorter-range. Finally, we demonstrate that age-related differences in head motion can both inflate and obscure developmental inferences on structural connectivity. Taken together, these data delineate the systematic impact of head motion on structural connectivity, and provide a critical context for identifying motion-related confounds in studies of structural brain network development.


Assuntos
Artefatos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Neuroimagem/métodos , Adolescente , Criança , Feminino , Cabeça , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Movimento (Física) , Adulto Jovem
17.
Nat Commun ; 8(1): 1252, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093441

RESUMO

As the human brain develops, it increasingly supports coordinated control of neural activity. The mechanism by which white matter evolves to support this coordination is not well understood. Here we use a network representation of diffusion imaging data from 882 youth ages 8-22 to show that white matter connectivity becomes increasingly optimized for a diverse range of predicted dynamics in development. Notably, stable controllers in subcortical areas are negatively related to cognitive performance. Investigating structural mechanisms supporting these changes, we simulate network evolution with a set of growth rules. We find that all brain networks are structured in a manner highly optimized for network control, with distinct control mechanisms predicted in child vs. older youth. We demonstrate that our results cannot be explained by changes in network modularity. This work reveals a possible mechanism of human brain development that preferentially optimizes dynamic network control over static network architecture.


Assuntos
Encéfalo/crescimento & desenvolvimento , Rede Nervosa/crescimento & desenvolvimento , Substância Branca/crescimento & desenvolvimento , Adolescente , Desenvolvimento do Adolescente , Encéfalo/diagnóstico por imagem , Criança , Desenvolvimento Infantil , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto Jovem
18.
Curr Biol ; 27(11): 1561-1572.e8, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28552358

RESUMO

The human brain is organized into large-scale functional modules that have been shown to evolve in childhood and adolescence. However, it remains unknown whether the underlying white matter architecture is similarly refined during development, potentially allowing for improvements in executive function. In a sample of 882 participants (ages 8-22) who underwent diffusion imaging as part of the Philadelphia Neurodevelopmental Cohort, we demonstrate that structural network modules become more segregated with age, with weaker connections between modules and stronger connections within modules. Evolving modular topology facilitates global network efficiency and is driven by age-related strengthening of hub edges present both within and between modules. Critically, both modular segregation and network efficiency are associated with enhanced executive performance and mediate the improvement of executive functioning with age. Together, results delineate a process of structural network maturation that supports executive function in youth.


Assuntos
Conectoma/métodos , Função Executiva/fisiologia , Rede Nervosa/fisiologia , Substância Branca/fisiologia , Adolescente , Fatores Etários , Criança , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Substância Branca/diagnóstico por imagem
19.
Neuroimage ; 154: 174-187, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28302591

RESUMO

Since initial reports regarding the impact of motion artifact on measures of functional connectivity, there has been a proliferation of participant-level confound regression methods to limit its impact. However, many of the most commonly used techniques have not been systematically evaluated using a broad range of outcome measures. Here, we provide a systematic evaluation of 14 participant-level confound regression methods in 393 youths. Specifically, we compare methods according to four benchmarks, including the residual relationship between motion and connectivity, distance-dependent effects of motion on connectivity, network identifiability, and additional degrees of freedom lost in confound regression. Our results delineate two clear trade-offs among methods. First, methods that include global signal regression minimize the relationship between connectivity and motion, but result in distance-dependent artifact. In contrast, censoring methods mitigate both motion artifact and distance-dependence, but use additional degrees of freedom. Importantly, less effective de-noising methods are also unable to identify modular network structure in the connectome. Taken together, these results emphasize the heterogeneous efficacy of existing methods, and suggest that different confound regression strategies may be appropriate in the context of specific scientific goals.


Assuntos
Benchmarking/métodos , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Criança , Humanos , Adulto Jovem
20.
Netw Neurosci ; 1(1): 42-68, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30793069

RESUMO

Brain networks are expected to be modular. However, existing techniques for estimating a network's modules make it difficult to assess the influence of organizational principles such as wiring cost reduction on the detected modules. Here we present a modification of an existing module detection algorithm that allowed us to focus on connections that are unexpected under a cost-reduction wiring rule and to identify modules from among these connections. We applied this technique to anatomical brain networks and showed that the modules we detected differ from those detected using the standard technique. We demonstrated that these novel modules are spatially distributed, exhibit unique functional fingerprints, and overlap considerably with rich clubs, giving rise to an alternative and complementary interpretation of the functional roles of specific brain regions. Finally, we demonstrated that, using the modified module detection approach, we can detect modules in a developmental dataset that track normative patterns of maturation. Collectively, these findings support the hypothesis that brain networks are composed of modules and provide additional insight into the function of those modules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...