Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Acta Ophthalmol ; 102(5): e687-e695, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38126128

RESUMO

PURPOSE: To compare detection rates of microaneurysms (MAs) on high-speed megahertz optical coherence tomography angiography (MHz-OCTA), fluorescein angiography (FA) and colour fundus photography (CF) in patients with diabetic retinopathy (DR). METHODS: For this exploratory cross-sectional study, MHz-OCTA data were acquired with a swept-source OCT prototype (A-scan rate: 1.7 MHz), and FA and CF imaging was performed using Optos® California. MA count was manually evaluated on en face MHz-OCTA/FA/CF images within an extended ETDRS grid. Detectability of MAs visible on FA images was evaluated on corresponding MHz-OCTA and CF images. MA distribution and leakage were correlated with detectability on OCTA and CF imaging. RESULTS: 47 eyes with severe DR (n = 12) and proliferative DR (n = 35) were included. MHz-OCTA and CF imaging detected on average 56% and 36% of MAs, respectively. MHz-OCTA detection rate was significantly higher than CF (p < 0.01). The combination of MHz-OCTA and CF leads to an increased detection rate of 70%. There was no statistically significant association between leakage and MA detectability on OCTA (p = 0.13). For CF, the odds of detecting leaking MAs were significantly lower than non-leaking MAs (p = 0.012). Using MHz-OCTA, detection of MAs outside the ETDRS grid was less likely than MAs located within the ETDRS grid (outer ring, p < 0.01; inner ring, p = 0.028). No statistically significant difference between rings was observed for CF measurements. CONCLUSIONS: More MAs were detected on MHz-OCTA than on CF imaging. Detection rate was lower for MAs located outside the macular region with MHz-OCTA and for leaking MAs with CF imaging. Combining both non-invasive modalities can improve MA detection.


Assuntos
Retinopatia Diabética , Angiofluoresceinografia , Fundo de Olho , Microaneurisma , Vasos Retinianos , Tomografia de Coerência Óptica , Humanos , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Estudos Transversais , Microaneurisma/diagnóstico , Microaneurisma/etiologia , Angiofluoresceinografia/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Idoso
2.
Neurooncol Adv ; 5(1): vdad136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024240

RESUMO

Background: The prognostic roles of clinical and laboratory markers have been exploited to model risk in patients with primary CNS lymphoma, but these approaches do not fully explain the observed variation in outcome. To date, neuroimaging or molecular information is not used. The aim of this study was to determine the utility of radiomic features to capture clinically relevant phenotypes, and to link those to molecular profiles for enhanced risk stratification. Methods: In this retrospective study, we investigated 133 patients across 9 sites in Austria (2005-2018) and an external validation site in South Korea (44 patients, 2013-2016). We used T1-weighted contrast-enhanced MRI and an L1-norm regularized Cox proportional hazard model to derive a radiomic risk score. We integrated radiomic features with DNA methylation profiles using machine learning-based prediction, and validated the most relevant biological associations in tissues and cell lines. Results: The radiomic risk score, consisting of 20 mostly textural features, was a strong and independent predictor of survival (multivariate hazard ratio = 6.56 [3.64-11.81]) that remained valid in the external validation cohort. Radiomic features captured gene regulatory differences such as in BCL6 binding activity, which was put forth as testable treatment target for a subset of patients. Conclusions: The radiomic risk score was a robust and complementary predictor of survival and reflected characteristics in underlying DNA methylation patterns. Leveraging imaging phenotypes to assess risk and inform epigenetic treatment targets provides a concept on which to advance prognostic modeling and precision therapy for this aggressive cancer.

3.
Opt Lett ; 48(13): 3499-3502, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390165

RESUMO

Polarization-related image artifacts are frequently observed in optical coherence tomography (OCT) data. As most modern OCT layouts rely on polarized light sources, only the co-polarized component of the light scattered from within a sample can be detected after interference with the reference beam. Cross-polarized sample light does not interfere with the reference beam and thus produces artifacts ranging from a reduction to the full absence of OCT signals. Here we present a simple yet effective technique to prevent polarization artifacts. By partly depolarizing the light source at the interferometer entrance, we achieve OCT signals regardless of the sample polarization state. We demonstrate the performance of our approach in a defined retarder as well as in birefringent dura mater tissue. This simple and cost-effective technique can be applied to obviate cross-polarization artifacts in virtually any OCT layout.


Assuntos
Artefatos , Tomografia de Coerência Óptica , Birrefringência
5.
Transl Vis Sci Technol ; 11(10): 28, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36259678

RESUMO

Purpose: Melanin plays an important function in maintaining eye health, however there are few metrics that can be used to study retinal melanin content in vivo. Methods: The slope of the spectral coefficient of variation (SSCoV) is a novel biomarker that measures chromophore concentration by analyzing the local divergence of spectral intensities using optical coherence tomography (OCT). This metric was validated in a phantom and applied in a longitudinal study of superoxide dismutase 1 knockout (SOD1-/-) mice, a model for wet and dry age-related macular degeneration. We also examined a new feature of interest in standard OCT image data, the ratio of maximum intensity in the retinal pigment epithelium to that of the choroid (RC ratio). These new biomarkers were supported by polarization-sensitive OCT and histological analysis. Results: SSCoV correlated well with depolarization metrics both in phantom and in vivo with both metrics decreasing more rapidly in SOD1-/- mice with age (P < 0.05). This finding is correlated with reduced melanin pigmentation in the choroid over time. The RC ratio clearly differentiated the SOD1-/- and control groups (P < 0.0005) irrespective of time and may indicate lower retinal pigment epithelium melanin in the SOD1-/- mice. Histological analysis showed decreased melanin content and potential differences in melanin granule shape in SOD1-/- mice. Conclusions: SSCoV and RC ratio biomarkers provided insights into the changes of retinal melanin in the SOD1-/- model longitudinally and noninvasively. Translational Relevance: These biomarkers were designed with the potential for rapid adoption by existing clinical OCT systems without requiring new hardware.


Assuntos
Melaninas , Tomografia de Coerência Óptica , Camundongos , Animais , Tomografia de Coerência Óptica/métodos , Superóxido Dismutase-1 , Estudos Longitudinais , Biomarcadores
6.
Sci Rep ; 12(1): 15381, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100620

RESUMO

Breast cancer is a leading cause of death in female patients worldwide. Further research is needed to get a deeper insight into the mechanisms involved in the development of this devastating disease and to find new therapy strategies. The zebrafish is an established animal model, especially in the field of oncology, which has shown to be a promising candidate for pre-clinical research and precision-based medicine. To investigate cancer growth in vivo in zebrafish, one approach is to explore xenograft tumor models. In this article, we present the investigation of a juvenile xenograft zebrafish model using a Jones matrix optical coherence tomography (JM-OCT) prototype. Immunosuppressed wild-type fish at 1-month post-fertilization were injected with human breast cancer cells and control animals with phosphate buffered saline in the tail musculature. In a longitudinal study, the scatter, polarization, and vasculature changes over time were investigated and quantified in control versus tumor injected animals. A significant decrease in birefringence and an increase in scattering signal was detected in tumor injected zebrafish in comparison to the control once. This work shows the potential of JM-OCT as a non-invasive, label-free, three-dimensional, high-resolution, and tissue-specific imaging tool in pre-clinical cancer research based on juvenile zebrafish models.


Assuntos
Neoplasias da Mama , Tomografia de Coerência Óptica , Animais , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Estudos Longitudinais , Tomografia de Coerência Óptica/métodos , Peixe-Zebra
7.
Biomed Opt Express ; 13(4): 2202-2223, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519284

RESUMO

The zebrafish is a valuable vertebrate animal model in pre-clinical cancer research. A Jones matrix optical coherence tomography (JM-OCT) prototype operating at 1310 nm and an intensity-based spectral-domain OCT setup at 840 nm were utilized to investigate adult wildtype and a tumor-developing zebrafish model. Various anatomical features were characterized based on their inherent scattering and polarization signature. A motorized translation stage in combination with the JM-OCT prototype enabled large field-of-view imaging to investigate adult zebrafish in a non-destructive way. The diseased animals exhibited tumor-related abnormalities in the brain and near the eye region. The scatter intensity, the attenuation coefficients and local polarization parameters such as the birefringence and the degree of polarization uniformity were analyzed to quantify differences in tumor versus control regions. The proof-of-concept study in a limited number of animals revealed a significant decrease in birefringence in tumors found in the brain and near the eye compared to control regions. The presented work showed the potential of OCT and JM-OCT as non-destructive, high-resolution, and real-time imaging modalities for pre-clinical research based on zebrafish.

8.
Biomed Opt Express ; 13(2): 647-661, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35284183

RESUMO

Irregular ocular pulsatility and altered mechanical tissue properties are associated with some of the most sight-threatening eye diseases. Here we present 4D optical coherence tomography (OCT) for the quantitative assessment and depth-resolved mapping of pulsatile dynamics in the murine retina and choroid. Through a pixel-wise analysis of phase changes of the complex OCT signal, we reveal spatiotemporal displacement characteristics across repeated frame acquisitions. We demonstrate in vivo fundus elastography (FUEL) imaging in wildtype mouse retinas and in a mouse model of retinal neovascularization and uncover subtle structural deformations related to ocular pulsation. Our data in mouse eyes hold promise for a powerful retinal elastography technique that may enable a new paradigm of OCT-based measurements and image contrast.

9.
Sci Data ; 9(1): 55, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169150

RESUMO

Currently, approximately 150 different brain tumour types are defined by the WHO. Recent endeavours to exploit machine learning and deep learning methods for supporting more precise diagnostics based on the histological tumour appearance have been hampered by the relative paucity of accessible digital histopathological datasets. While freely available datasets are relatively common in many medical specialties such as radiology and genomic medicine, there is still an unmet need regarding histopathological data. Thus, we digitized a significant portion of a large dedicated brain tumour bank based at the Division of Neuropathology and Neurochemistry of the Medical University of Vienna, covering brain tumour cases from 1995-2019. A total of 3,115 slides of 126 brain tumour types (including 47 control tissue slides) have been scanned. Additionally, complementary clinical annotations have been collected for each case. In the present manuscript, we thoroughly discuss this unique dataset and make it publicly available for potential use cases in machine learning and digital image analysis, teaching and as a reference for external validation.


Assuntos
Neoplasias Encefálicas , Neoplasias Encefálicas/diagnóstico por imagem , Aprendizado Profundo , Humanos
10.
J Biomed Opt ; 27(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35064657

RESUMO

SIGNIFICANCE: The scattering and polarization characteristics of various organs of in vivo wildtype zebrafish in three development stages were investigated using a non-destructive and label-free approach. The presented results showed a promising first step for the usability of Jones-matrix optical coherence tomography (JM-OCT) in zebrafish-based research. AIM: We aim to visualize and quantify the scatter and polarization signatures of various zebrafish organs for larvae, juvenile, and young adult animals in vivo in a non-invasive and label-free way. APPROACH: A custom-built polarization-sensitive JM-OCT setup in combination with a motorized translation stage was utilized to investigate live zebrafish. Depth-resolved scattering (intensity and attenuation coefficient) and polarization (birefringence and degree of polarization uniformity) properties were analyzed. OCT angiography (OCT-A) was utilized to investigate the vasculature label-free and non-destructively. RESULTS: The scatter and polarization signatures of the zebrafish organs such as the eye, gills, and muscles were investigated. The attenuation coefficient and birefringence changes between 1- and 2-month-old animals were evaluated in selected organs. OCT-A revealed the vasculature of in vivo larvae and juvenile zebrafish in a label-free manner. CONCLUSIONS: JM-OCT offers a rapid, label-free, non-invasive, tissue specific, and three-dimensional imaging tool to investigate in vivo processes in zebrafish in various development stages.


Assuntos
Tomografia de Coerência Óptica , Peixe-Zebra , Animais , Birrefringência , Refração Ocular
11.
Bioengineering (Basel) ; 10(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36671577

RESUMO

The zebrafish is an established vertebrae model in the field of biomedical research. With its small size, rapid maturation time and semi-transparency at early development stages, it has proven to be an important animal model, especially for high-throughput studies. Three-dimensional, high-resolution, non-destructive and label-free imaging techniques are perfectly suited to investigate these animals over various development stages. Optical coherence tomography (OCT) is an interferometric-based optical imaging technique that has revolutionized the diagnostic possibilities in the field of ophthalmology and has proven to be a powerful tool for many microscopic applications. Recently, OCT found its way into state-of-the-art zebrafish-based research. This review article gives an overview and a discussion of the relevant literature and an outlook for this emerging field.

12.
Biomed Opt Express ; 12(11): 6780-6795, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34858680

RESUMO

Achieving high resolution in optical coherence tomography typically requires the continuous extension of the spectral bandwidth of the light source. This work demonstrates an alternative approach: combining two discrete spectral windows located in the visible spectrum with a trained conditional generative adversarial network (cGAN) to reconstruct a high-resolution image equivalent to that generated using a continuous spectral band. The cGAN was trained using OCT image pairs acquired with the continuous and discontinuous visible range spectra to learn the relation between low- and high-resolution data. The reconstruction performance was tested using 6000 B-scans of a layered phantom, micro-beads and ex-vivo mouse ear tissue. The resultant cGAN-generated images demonstrate an image quality and axial resolution which approaches that of the high-resolution system.

13.
Biomed Opt Express ; 12(10): 6391-6406, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34745744

RESUMO

Cataracts are the leading cause of blindness worldwide. Here we propose optical coherence tomography (OCT) as a quantitative method for investigating cataracts. OCT provides volumetric and non-invasive access to the lens and makes it possible to rapidly observe the formation of opacifications in animal models such as mice. We compared the performance of two different wavelengths - 1060 nm and 1310 nm - for OCT imaging in cataract research. In addition, we present multi-contrast OCT capable of mapping depth-resolved scattering and average anterior cortical attenuation properties of the crystalline lens and quantitatively characterize induced cataract development in the mouse eye. Lastly, we also propose a novel method based on the retinal OCT projection image for quantifying and mapping opacifications in the lens, which showed a good correlation with scattering and attenuation characteristics simultaneously analyzed during the process of cataract formation in the lens.

14.
Biomed Opt Express ; 12(4): 1774-1791, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996197

RESUMO

Vascular leakage plays a key role in vision-threatening retinal diseases such as diabetic retinopathy and age-related macular degeneration. Fluorescence angiography is the current gold standard for identification of leaky vasculature in vivo, however it lacks depth resolution, providing only 2D images that complicate precise identification and localization of pathological vessels. Optical coherence tomography (OCT) has been widely adopted for clinical ophthalmology due to its high, micron-scale resolution and rapid volumetric scanning capabilities. Nevertheless, OCT cannot currently identify leaky blood vessels. To address this need, we have developed a new method called exogenous contrast-enhanced leakage OCT (ExCEL-OCT) which identifies the diffusion of tracer particles around leaky vasculature following injection of a contrast agent. We apply this method to a mouse model of retinal neovascularization and demonstrate high-resolution 3D vascular leakage measurements in vivo for the first time.

15.
Biomed Opt Express ; 12(4): 2339-2352, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996233

RESUMO

Currently, the cochlear implantation procedure mainly relies on using a hand lens or surgical microscope, where the success rate and surgery time strongly depend on the surgeon's experience. Therefore, a real-time image guidance tool may facilitate the implantation procedure. In this study, we performed a systematic and quantitative analysis on the optical characterization of ex vivo mouse cochlear samples using two swept-source optical coherence tomography (OCT) systems operating at the 1.06-µm and 1.3-µm wavelengths. The analysis results demonstrated that the 1.06-µm OCT imaging system performed better than the 1.3-µm OCT imaging system in terms of the image contrast between the cochlear conduits and the neighboring cochlear bony wall structure. However, the 1.3-µm OCT imaging system allowed for greater imaging depth of the cochlear samples because of decreased tissue scattering. In addition, we have investigated the feasibility of identifying the electrode of the cochlear implant within the ex vivo cochlear sample with the 1.06-µm OCT imaging. The study results demonstrated the potential of developing an image guidance tool for the cochlea implantation procedure as well as other otorhinolaryngology applications.

16.
J Biophotonics ; 14(4): e202000323, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33332741

RESUMO

Polarization-sensitive optical coherence tomography (PS-OCT) enables three-dimensional imaging of biological tissues based on the inherent contrast provided by scattering and polarization properties. In fibrous tissue such as the white matter of the brain, PS-OCT allows quantitative mapping of tissue birefringence. For the popular PS-OCT layout using a single circular input state, birefringence measurements are based on a straight-forward evaluation of phase retardation data. However, the accuracy of these measurements strongly depends on the signal-to-noise ratio (SNR) and is prone to mapping artifacts when the SNR is low. Here we present a simple yet effective approach for improving the accuracy of PS-OCT phase retardation and birefringence measurements. By performing a noise bias correction of the detected OCT signal amplitudes, the impact of the noise floor on retardation measurements can be markedly reduced. We present simulation data to illustrate the influence of the noise bias correction on phase retardation measurements and support our analysis with real-world PS-OCT image data.


Assuntos
Artefatos , Tomografia de Coerência Óptica , Birrefringência , Neuroimagem , Razão Sinal-Ruído
17.
Transl Vis Sci Technol ; 9(4): 15, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32818102

RESUMO

Purpose: The retinal phenotype of popular mouse models mimicking ophthalmic diseases, such as the superoxide dismutase 1 (SOD1) knockout (KO) mouse model, has mainly been assessed by ex vivo histology and in vivo fundus photography. We used multifunctional optical coherence tomography (OCT) to characterize the retinas of SOD1 KO mice in vivo. Methods: The custom-made ophthalmoscope featured a combination of conventional OCT, polarization-sensitive OCT, and OCT angiography. Seven SOD1 KO mice and nine age-matched controls were imaged between 6 and 17 months of age. A postprocessing framework was used to analyze total and outer retinal thickness changes. Drusenlike lesions were segmented, and their sizes and the number of lesions were assessed quantitatively. Their appearance in the conventional reflectivity images, as well as in the corresponding polarization-sensitive images, was characterized qualitatively. Results: Drusenlike lesions increased in size and number with age for SOD1 KO mice. Exploiting the multiple contrast channels, the appearance of the lesions was found to resemble pseudodrusen observed in eyes of patients suffering from dry age-related macular degeneration. The total and outer retinal thicknesses were lower on average after 11 months and 7 months in SOD1 KO mice compared with age-matched controls. Neovascularizations were found in one out of seven KO animals. Conclusions: OCT imaging proved beneficial for a detailed in vivo characterization of the pathological changes in SOD1 KO mice. Translational Relevance: Phenotyping of animal models using modern imaging concepts can be conducted with more precision and might also ease the translation of conclusions between clinical and preclinical research.


Assuntos
Superóxido Dismutase , Tomografia de Coerência Óptica , Animais , Humanos , Camundongos , Camundongos Knockout , Retina/diagnóstico por imagem , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
18.
Neurophotonics ; 7(3): 035004, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32855993

RESUMO

Significance: Amyloid-beta ( A - ß ) plaques are pathological protein deposits formed in the brain of Alzheimer's disease (AD) patients upon disease progression. Further research is needed to elucidate the complex underlying mechanisms involved in their formation using label-free, tissue preserving, and volumetric techniques. Aim: The aim is to achieve a one-to-one correlation of optical coherence tomography (OCT) data to histological micrographs of brain tissue using 1060-nm swept source OCT. Approach: A - ß plaques were investigated in ex-vivo AD brain tissue using OCT with the capability of switching between two magnifications. For the exact correlation to histology, a 3D-printed tool was designed to generate samples with parallel flat surfaces. Large field-of-view (FoV) and sequentially high-resolution volumes at different locations were acquired. The large FoV served to align the OCT to histology images; the high-resolution images were used to visualize fine details. Results: The instrument and the presented method enabled an accurate correlation of histological micrographs with OCT data. A - ß plaques were identified as hyperscattering features in both FoV OCT modalities. The plaques identified in volumetric OCT data were in good agreement with immunohistochemically derived micrographs. Conclusion: OCT combined with the 3D-printed tool is a promising approach for label-free, nondestructive, volumetric, and fast tissue analysis.

19.
Cancers (Basel) ; 12(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640583

RESUMO

Fluorescence-guided surgery is a state-of-the-art approach for intraoperative imaging during neurosurgical removal of tumor tissue. While the visualization of high-grade gliomas is reliable, lower grade glioma often lack visible fluorescence signals. Here, we present a hybrid prototype combining visible light optical coherence microscopy (OCM) and high-resolution fluorescence imaging for assessment of brain tumor samples acquired by 5-aminolevulinic acid (5-ALA) fluorescence-guided surgery. OCM provides high-resolution information of the inherent tissue scattering and absorption properties of tissue. We here explore quantitative attenuation coefficients derived from volumetric OCM intensity data and quantitative high-resolution 5-ALA fluorescence as potential biomarkers for tissue malignancy including otherwise difficult-to-assess low-grade glioma. We validate our findings against the gold standard histology and use attenuation and fluorescence intensity measures to differentiate between tumor core, infiltrative zone and adjacent brain tissue. Using large field-of-view scans acquired by a near-infrared swept-source optical coherence tomography setup, we provide initial assessments of tumor heterogeneity. Finally, we use cross-sectional OCM images to train a convolutional neural network that discriminates tumor from non-tumor tissue with an accuracy of 97%. Collectively, the present hybrid approach offers potential to translate into an in vivo imaging setup for substantially improved intraoperative guidance of brain tumor surgeries.

20.
Cancers (Basel) ; 12(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605068

RESUMO

We aimed to evaluate the potential of radiomics as an imaging biomarker for glioblastoma (GBM) patients and explore the molecular rationale behind radiomics using a radio-genomics approach. A total of 144 primary GBM patients were included in this study (training cohort). Using multi-parametric MR images, radiomics features were extracted from multi-habitats of the tumor. We applied Cox-LASSO algorithm to build a survival prediction model, which we validated using an independent validation cohort. GBM patients were consensus clustered to reveal inherent phenotypic subtypes. GBM patients were successfully stratified by the radiomics risk score, a weighted sum of radiomics features, corroborating the potential of radiomics as a prognostic biomarker. Using consensus clustering, we identified three distinct subtypes which significantly differed in the prognosis ("heterogenous enhancing", "rim-enhancing necrotic", and "cystic" subtypes). Transcriptomic traits enriched in individual subtypes were in accordance with imaging phenotypes summarized by radiomics. For example, rim-enhancing necrotic subtype was well described by radiomics profiling (T2 autocorrelation and flat shape) and highlighted by the inflammatory genomic signatures, which well correlated to its phenotypic peculiarity (necrosis). This study showed that imaging subtypes derived from radiomics successfully recapitulated the genomic underpinnings of GBMs and thereby confirmed the feasibility of radiomics as an imaging biomarker for GBM patients with comprehensible biologic annotation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...