Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38302441

RESUMO

Ocular position drifts during gaze fixation are significantly less well understood than microsaccades. We recently identified a short-latency ocular position drift response, of ∼1 min arc amplitude, that is triggered within <100 ms by visual onsets. This systematic eye movement response is feature-tuned and seems to be coordinated with a simultaneous resetting of the saccadic system by visual stimuli. However, much remains to be learned about the drift response, especially for designing better-informed neurophysiological experiments unraveling its mechanistic substrates. Here we systematically tested multiple new feature tuning properties of drift responses. Using highly precise eye tracking in three male rhesus macaque monkeys, we found that drift responses still occur for tiny foveal visual stimuli. Moreover, the responses exhibit size tuning, scaling their amplitude (both up and down) as a function of stimulus size, and they also possess a monotonically increasing contrast sensitivity curve. Importantly, short-latency drift responses still occur for small peripheral visual targets, which additionally introduce spatially directed modulations in drift trajectories toward the appearing peripheral stimuli. Drift responses also remain predominantly upward even for stimuli exclusively located in the lower visual field and even when starting gaze position is upward. When we checked the timing of drift responses, we found it was better synchronized to stimulus-induced saccadic inhibition than to stimulus onset. These results, along with a suppression of drift response amplitudes by peristimulus saccades, suggest that drift responses reflect the rapid impacts of short-latency and feature-tuned visual neural activity on final oculomotor control circuitry in the brain.


Assuntos
Fixação Ocular , Visão Ocular , Animais , Masculino , Macaca mulatta , Movimentos Oculares , Movimentos Sacádicos , Percepção Visual/fisiologia
2.
J Neurophysiol ; 130(5): 1282-1302, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37818591

RESUMO

Saccadic inhibition refers to a short-latency transient cessation of saccade generation after visual sensory transients. This oculomotor phenomenon occurs with a latency that is consistent with a rapid influence of sensory responses, such as stimulus-induced visual bursts, on oculomotor control circuitry. However, the neural mechanisms underlying saccadic inhibition are not well understood. Here, we exploited the fact that macaque monkeys experience robust saccadic inhibition to test the hypothesis that inhibition time and strength exhibit systematic visual feature tuning properties to a multitude of visual feature dimensions commonly used in vision science. We measured saccades in three monkeys actively controlling their gaze on a target, and we presented visual onset events at random times. Across seven experiments, the visual onsets tested size, spatial frequency, contrast, orientation, motion direction, and motion speed dependencies of saccadic inhibition. We also investigated how inhibition might depend on the behavioral relevance of the appearing stimuli. We found that saccadic inhibition starts earlier, and is stronger, for large stimuli of low spatial frequencies and high contrasts. Moreover, saccadic inhibition timing depends on motion direction and orientation, with earlier inhibition systematically occurring for horizontally drifting vertical gratings. On the other hand, saccadic inhibition is stronger for faster motions and when the appearing stimuli are subsequently foveated. Besides documenting a range of feature tuning dimensions of saccadic inhibition to the properties of exogenous visual stimuli, our results establish macaque monkeys as an ideal model system for unraveling the neural mechanisms underlying a ubiquitous oculomotor phenomenon in visual neuroscience.NEW & NOTEWORTHY Visual onsets dramatically reduce saccade generation likelihood with very short latencies. Such latencies suggest that stimulus-induced visual responses, normally jump-starting perceptual and scene analysis processes, can also directly impact the decision of whether to generate saccades or not, causing saccadic inhibition. Consistent with this, we found that changing the appearance of the visual onsets systematically alters the properties of saccadic inhibition. These results constrain neurally inspired models of coordination between saccade generation and exogenous sensory stimulation.


Assuntos
Movimentos Oculares , Movimentos Sacádicos , Animais , Movimento (Física) , Macaca mulatta , Inibição Psicológica , Tempo de Reação/fisiologia , Estimulação Luminosa
3.
Proc Natl Acad Sci U S A ; 120(38): e2305759120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695898

RESUMO

Movement control is critical for successful interaction with our environment. However, movement does not occur in complete isolation of sensation, and this is particularly true of eye movements. Here, we show that the neuronal eye movement commands emitted by the superior colliculus (SC), a structure classically associated with oculomotor control, encompass a robust visual sensory representation of eye movement targets. Thus, similar saccades toward different images are associated with different saccade-related "motor" bursts. Such sensory tuning in SC saccade motor commands appeared for all image manipulations that we tested, from simple visual features to real-life object images, and it was also strongest in the most motor neurons in the deeper collicular layers. Visual-feature discrimination performance in the motor commands was also stronger than in visual responses. Comparing SC motor command feature discrimination performance to that in the primary visual cortex during steady-state gaze fixation revealed that collicular motor bursts possess a reliable perisaccadic sensory representation of the peripheral saccade target's visual appearance, exactly when retinal input is expected to be most uncertain. Our results demonstrate that SC neuronal movement commands likely serve a fundamentally sensory function.


Assuntos
Movimentos Oculares , Movimento , Neurônios Motores , Movimentos Sacádicos , Discriminação Psicológica
4.
J Neurosci ; 42(50): 9356-9371, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36319117

RESUMO

Visual processing is segregated into ON and OFF channels as early as in the retina, and the superficial (output) layers of the primary visual cortex (V1) are dominated by neurons preferring dark stimuli. However, it is not clear how the timing of neural processing differs between "darks" and "brights" in general, especially in light of psychophysical evidence; it is also equally not clear how subcortical visual pathways that are critical for active orienting represent stimuli of positive (luminance increments) and negative (luminance decrements) contrast polarity. Here, we recorded from all visually-responsive neuron types in the superior colliculus (SC) of two male rhesus macaque monkeys. We presented a disk (0.51° radius) within the response fields (RFs) of neurons, and we varied, across trials, stimulus Weber contrast relative to a gray background. We also varied contrast polarity. There was a large diversity of preferences for darks and brights across the population. However, regardless of individual neural sensitivity, most neurons responded significantly earlier to dark than bright stimuli. This resulted in a dissociation between neural preference and visual response onset latency: a neuron could exhibit a weaker response to a dark stimulus than to a bright stimulus of the same contrast, but it would still have an earlier response to the dark stimulus. Our results highlight an additional candidate visual neural pathway for explaining behavioral differences between the processing of darks and brights, and they demonstrate the importance of temporal aspects in the visual neural code for orienting eye movements.SIGNIFICANCE STATEMENT Objects in our environment, such as birds flying across a bright sky, often project shadows (or images darker than the surround) on our retina. We studied how primate superior colliculus (SC) neurons visually process such dark stimuli. We found that the overall population of SC neurons represented both dark and bright stimuli equally well, as evidenced by a relatively equal distribution of neurons that were either more or less sensitive to darks. However, independent of sensitivity, the great majority of neurons detected dark stimuli earlier than bright stimuli, evidenced by a smaller response latency for the dark stimuli. Thus, SC neural response latency can be dissociated from response sensitivity, and it favors the faster detection of dark image contrasts.


Assuntos
Colículos Superiores , Vias Visuais , Animais , Masculino , Colículos Superiores/fisiologia , Macaca mulatta , Estimulação Luminosa , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Neurônios/fisiologia
5.
Commun Biol ; 5(1): 1222, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369354

RESUMO

The primate superior colliculus (SC) contains a topographic map of space, such that the anatomical location of active neurons defines a desired eye movement vector. Complementing such a spatial code, SC neurons also exhibit saccade-related bursts that are tightly synchronized with movement onset. Current models suggest that such bursts constitute a rate code dictating movement kinematics. Here, using two complementary approaches, we demonstrate a dissociation between the SC rate code and saccade kinematics. First, we show that SC burst strength systematically varies depending on whether saccades of the same amplitude are directed towards the upper or lower visual fields, but the movements themselves have similar kinematics. Second, we show that for the same saccade vector, when saccades are significantly slowed down by the absence of a visible saccade target, SC saccade-related burst strengths can be elevated rather than diminished. Thus, SC saccade-related motor bursts do not necessarily dictate movement kinematics.


Assuntos
Movimentos Sacádicos , Colículos Superiores , Animais , Colículos Superiores/fisiologia , Fenômenos Biomecânicos , Macaca mulatta , Movimentos Oculares
6.
J Vis ; 21(5): 15, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34003243

RESUMO

Across saccades, perceptual detectability of brief visual stimuli is strongly diminished. We recently observed that this perceptual suppression phenomenon is jumpstarted in the retina, suggesting that the phenomenon might be significantly more visual in nature than normally acknowledged. Here, we explicitly compared saccadic suppression strength when saccades were made across a uniform image of constant luminance versus when saccades were made across image patches of different luminance, width, and trans-saccadic luminance polarity. We measured perceptual contrast thresholds of human subjects for brief peri-saccadic flashes of positive (luminance increments) or negative (luminance decrements) polarity. Thresholds were >6-7 times higher when saccades translated a luminance stripe or edge across the retina than when saccades were made over a completely uniform image patch. Critically, both background luminance and flash luminance polarity strongly modulated peri-saccadic contrast thresholds. In addition, all of these very same visual dependencies also occurred in the absence of any saccades, but with qualitatively similar rapid translations of image patches across the retina. This similarity of visual dependencies with and without saccades supports the notion that perceptual saccadic suppression may be fundamentally a visual phenomenon, which strongly motivates neurophysiological and theoretical investigations on the role of saccadic eye movement commands in modulating its properties.


Assuntos
Movimentos Sacádicos , Percepção Visual , Humanos , Luz , Retina , Visão Ocular
7.
J Neurophysiol ; 125(4): 1121-1138, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534661

RESUMO

The primate superior colliculus (SC) has recently been shown to possess both a large foveal representation as well as a varied visual processing repertoire. This structure is also known to contribute to eye movement generation. Here, we describe our current understanding of how SC visual and movement-related signals interact within the realm of small eye movements associated with the foveal scale of visuomotor behavior. Within the SC's foveal representation, there is a full spectrum of visual, visual-motor, and motor-related discharge for fixational eye movements. Moreover, a substantial number of neurons only emit movement-related discharge when microsaccades are visually guided, but not when similar movements are generated toward a blank. This represents a particularly striking example of integrating vision and action at the foveal scale. Beyond that, SC visual responses themselves are strongly modulated, and in multiple ways, by the occurrence of small eye movements. Intriguingly, this impact can extend to eccentricities well beyond the fovea, causing both sensitivity enhancement and suppression in the periphery. Because of large foveal magnification of neural tissue, such long-range eccentricity effects are neurally warped into smaller differences in anatomical space, providing a structural means for linking peripheral and foveal visual modulations around fixational eye movements. Finally, even the retinal-image visual flows associated with tiny fixational eye movements are signaled fairly faithfully by peripheral SC neurons with relatively large receptive fields. These results demonstrate how studying active vision at the foveal scale represents an opportunity for understanding primate vision during natural behaviors involving ever-present foveating eye movements.NEW & NOTEWORTHY The primate superior colliculus (SC) is ideally suited for active vision at the foveal scale: it enables detailed foveal visual analysis by accurately driving small eye movements, and it also possesses a visual processing machinery that is sensitive to active eye movement behavior. Studying active vision at the foveal scale in the primate SC is informative for broader aspects of active perception, including the overt and covert processing of peripheral extra-foveal visual scene locations.


Assuntos
Comportamento Animal/fisiologia , Movimentos Oculares/fisiologia , Fóvea Central/fisiologia , Atividade Motora/fisiologia , Primatas/fisiologia , Desempenho Psicomotor/fisiologia , Colículos Superiores/fisiologia , Percepção Visual/fisiologia , Animais
8.
Nat Commun ; 11(1): 1977, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332756

RESUMO

Visual sensitivity, probed through perceptual detectability of very brief visual stimuli, is strongly impaired around the time of rapid eye movements. This robust perceptual phenomenon, called saccadic suppression, is frequently attributed to active suppressive signals that are directly derived from eye movement commands. Here we show instead that visual-only mechanisms, activated by saccade-induced image shifts, can account for all perceptual properties of saccadic suppression that we have investigated. Such mechanisms start at, but are not necessarily exclusive to, the very first stage of visual processing in the brain, the retina. Critically, neural suppression originating in the retina outlasts perceptual suppression around the time of saccades, suggesting that extra-retinal movement-related signals, rather than causing suppression, may instead act to shorten it. Our results demonstrate a far-reaching contribution of visual processing mechanisms to perceptual saccadic suppression, starting in the retina, without the need to invoke explicit motor-based suppression commands.


Assuntos
Retina/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Visual , Adulto , Animais , Feminino , Fixação Ocular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Estimulação Luminosa , Tempo de Reação , Suínos , Visão Ocular , Campos Visuais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...