Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38673262

RESUMO

Thermoelectric devices are both solid-state heat pumps and energy generators. Having a reversible process without moving parts is of high importance for applications in remote locations or under extreme conditions. Yet, most thermoelectric devices have a rather limited energy conversion efficiency due to the natural competition between high electrical conductivity and low thermal conductivity, both being essential conditions for achieving a high energy conversion efficiency. Heavy-fermion compounds YbT2Zn20 (T = Co, Rh, Ir) have been reported to be potential candidate materials for thermoelectric applications at low temperatures. Motivated by this result, we applied chemical substitution studies on the transition metal site in order to optimize the charge carrier concentration as well as promote more efficient phonon scatterings. Here, we present the latest investigation on the Ni-doped specimens YbCo2-xNixZn20, where enhanced thermoelectric figure of merit values have been obtained.

2.
Sci Adv ; 10(4): eadl2818, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277457

RESUMO

For some intermetallic compounds containing lanthanides, structural transitions can result in intermediate electronic states between trivalency and tetravalency; however, this is rarely observed for praseodymium compounds. The dominant trivalency of praseodymium limits potential discoveries of emergent quantum states in itinerant 4f1 systems accessible using Pr4+-based compounds. Here, we use in situ powder x-ray diffraction and in situ electron energy-loss spectroscopy (EELS) to identify an intermetallic example of a dominantly Pr4+ state in the polymorphic system Pr2Co3Ge5. The structure-valence transition from a nearly full Pr4+ electronic state to a typical Pr3+ state shows the potential of Pr-based intermetallic compounds to host valence-unstable states and provides an opportunity to discover previously unknown quantum phenomena. In addition, this work emphasizes the need for complementary techniques like EELS when evaluating the magnetic and electronic properties of Pr intermetallic systems to reveal details easily overlooked when relying on bulk magnetic measurements alone.

3.
Inorg Chem ; 62(44): 18049-18055, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870243

RESUMO

There is an ongoing interest in kagome materials because they offer tunable platforms at the intersection of magnetism and electron correlation. Herein, we examine single crystals of new kagome materials, LnxCo3(Ge1-ySny)3 (Ln = Y, Gd; y = 0.11, 0.133), which were produced using the Sn flux-growth method. Unlike many of the related chemical analogues with the LnM6X6 formula (M = transition metal and X = Ge, Sn), the Y and Gd analogues crystallize in a hybrid YCo6Ge6/CoSn structure, with Sn substitution. While the Y analogue displays temperature-independent paramagnetism, magnetic measurements of the Gd analogue reveal a magnetic moment of 8.48 µB, indicating a contribution from both Gd and Co. Through anisotropic magnetic measurements, the direction of Co-magnetism can be inferred to be in plane with the kagome net, as the Co contribution is only along H//a. Crystal growth and structure determination of YxCo3(Ge,Sn)3 and GdxCo3(Ge,Sn)3, two new hybrid kagome materials of the CoSn and YCo6Ge6 structure types. Magnetic properties, heat capacity, and resistivity on single crystals are reported.

4.
J Am Chem Soc ; 145(1): 207-215, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36534963

RESUMO

Many quantum magnetic materials suffer from structural imperfections. The effects of structural disorder on bulk properties are difficult to assess systematically from a chemical perspective due to the complexities of chemical synthesis. The recently reported S = 1/2 kagome lattice antiferromagnet, (CH3NH3)2NaTi3F12, 1-Ti, with highly symmetric kagome layers and disordered interlayer methylammonium cations, shows no magnetic ordering down to 0.1 K. To study the impact of structural disorder in the titanium fluoride kagome compounds, (CH3NH3)2KTi3F12, 2-Ti, was prepared. It presents no detectable structural disorder and only a small degree of distortion of the kagome lattice. The methylammonium disorder model of 1-Ti and order in 2-Ti were confirmed by atomic-resolution transmission electron microscopy. The antiferromagnetic interactions and band structures of both compounds were calculated based on spin-polarized density functional theory and support the magnetic structure analysis. Three spin-glass-like (SGL) transitions were observed in 2-Ti at 0.5, 1.4, and 2.3 K, while a single SGL transition can be observed in 1-Ti at 0.8 K. The absolute values of the Curie-Weiss temperatures of both 1-Ti (-139.5(7) K) and 2-Ti (-83.5(7) K) are larger than the SGL transition temperatures, which is indicative of geometrically frustrated spin glass (GFSG) states. All the SGL transitions are quenched with an applied field >0.1 T, which indicates novel magnetic phases emerge under small applied magnetic fields. The well-defined structure and the lack of structural disorder in 2-Ti suggest that 2-Ti is an ideal model compound for studying GFSG states and the potential transitions between spin liquid and GFSG states.

5.
ACS Nano ; 16(11): 18695-18707, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36257051

RESUMO

Interlayer excitons, or bound electron-hole pairs whose constituent quasiparticles are located in distinct stacked semiconducting layers, are being intensively studied in heterobilayers of two-dimensional semiconductors. They owe their existence to an intrinsic type-II band alignment between both layers that convert these into p-n junctions. Here, we unveil a pronounced interlayer exciton (IX) in heterobilayers of metal monochalcogenides, namely, γ-InSe on ε-GaSe, whose pronounced emission is adjustable just by varying their thicknesses given their number of layers dependent direct band gaps. Time-dependent photoluminescense spectroscopy unveils considerably longer interlayer exciton lifetimes with respect to intralayer ones, thus confirming their nature. The linear Stark effect yields a bound electron-hole pair whose separation d is just (3.6 ± 0.1) Å with d being very close to dSe = 3.4 Å which is the calculated interfacial Se separation. The envelope of IX is twist-angle-dependent and describable by superimposed emissions that are nearly equally spaced in energy, as if quantized due to localization induced by the small moiré periodicity. These heterostacks are characterized by extremely flat interfacial valence bands making them prime candidates for the observation of magnetism or other correlated electronic phases upon carrier doping.

6.
Inorg Chem ; 61(39): 15645-15653, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36121353

RESUMO

Reactions of cerium and nickel in excess molten gallium were monitored by neutron diffraction during heating and cooling. The formation of binary intermediates CeGa2 and Ni2Ga3 was observed during heating. During cooling of the molten mixture from 900 °C, precipitation of BaAl4-type CeNi0.74Ga3.26 occurred at 850 °C. Upon cooling to 650 °C, this compound reacted in the flux to form Ce2NiGa10 and then Ce2NiGa12, the latter of which persisted to room temperature. Making use of this information, subsequent reactions were quenched at 750 °C to isolate crystals of CeNi0.74Ga3.26 for further study. Similar reactions replacing Ce with La and quenching above 750 °C yielded LaNi0.35Ga3.65 crystals. Magnetic susceptibility studies on CeNi0.74Ga3.26 indicate that the cerium is trivalent; the Ce3+ moments undergo a strongly anisotropic ferromagnetic ordering with moment perpendicular to the c axis below 7 K. Heat capacity data show little evidence of heavy fermion behavior. Resistivity measurements show that both LaNi0.35Ga3.65 and CeNi0.74Ga3.26 exhibit metallic behavior. Density of states calculations support this and indicate that Ni/Ga mixing in the compound stabilizes the structure.

7.
Sci Adv ; 8(32): eabp8264, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35947661

RESUMO

Although strongly correlated f-electron systems are well known as reservoirs for quantum phenomena, a persistent challenge is to design specific states. What is often missing are simple ways to determine whether a given compound can be expected to exhibit certain behaviors and what tuning vector(s) would be useful to select the ground state. In this review, we address this question by aggregating information about Ce, Eu, Yb, and U compounds with the ThCr2Si2 structure. We construct electronic/magnetic state maps that are parameterized in terms of unit cell volumes and d-shell filling, which reveals useful trends including that (i) the magnetic and nonmagnetic examples are well separated, and (ii) the crossover regions harbor the examples with exotic states. These insights are used to propose structural/chemical regions of interest in these and related materials, with the goal of accelerating discovery of the next generation of f-electron quantum materials.

8.
Nat Commun ; 13(1): 201, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017503

RESUMO

Variations in bonding between trivalent lanthanides and actinides is critical for reprocessing spent nuclear fuel. The ability to tune bonding and the coordination environment in these trivalent systems is a key factor in identifying a solution for separating lanthanides and actinides. Coordination of 4,4'-bipyridine (4,4'-bpy) and trimethylsilylcyclopentadienide (Cp') to americium introduces unexpectedly ionic Am-N bonding character and unique spectroscopic properties. Here we report the structural characterization of (Cp'3Am)2(µ - 4,4'-bpy) and its lanthanide analogue, (Cp'3Nd)2(µ - 4,4'-bpy), by single-crystal X-ray diffraction. Spectroscopic techniques in both solid and solution phase are performed in conjunction with theoretical calculations to probe the effects the unique coordination environment has on the electronic structure.

9.
Nat Commun ; 12(1): 7230, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893651

RESUMO

Controlling the properties of heavy element complexes, such as those containing berkelium, is challenging because relativistic effects, spin-orbit and ligand-field splitting, and complex metal-ligand bonding, all dictate the final electronic states of the molecules. While the first two of these are currently beyond experimental control, covalent M‒L interactions could theoretically be boosted through the employment of chelators with large polarizabilities that substantially shift the electron density in the molecules. This theory is tested by ligating BkIII with 4'-(4-nitrophenyl)-2,2':6',2"-terpyridine (terpy*), a ligand with a large dipole. The resultant complex, Bk(terpy*)(NO3)3(H2O)·THF, is benchmarked with its closest electrochemical analog, Ce(terpy*)(NO3)3(H2O)·THF. Here, we show that enhanced Bk‒N interactions with terpy* are observed as predicted. Unexpectedly, induced polarization by terpy* also creates a plane in the molecules wherein the M‒L bonds trans to terpy* are shorter than anticipated. Moreover, these molecules are highly anisotropic and rhombic EPR spectra for the CeIII complex are reported.

10.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975950

RESUMO

Electrical resistivity measurements were performed on single crystals of URu2-x Os x Si2 up to x = 0.28 under hydrostatic pressure up to P = 2 GPa. As the Os concentration, x, is increased, 1) the lattice expands, creating an effective negative chemical pressure Pch(x); 2) the hidden-order (HO) phase is enhanced and the system is driven toward a large-moment antiferromagnetic (LMAFM) phase; and 3) less external pressure Pc is required to induce the HO→LMAFM phase transition. We compare the behavior of the T(x, P) phase boundary reported here for the URu2-x Os x Si2 system with previous reports of enhanced HO in URu2Si2 upon tuning with P or similarly in URu2-x Fe x Si2 upon tuning with positive Pch(x). It is noteworthy that pressure, Fe substitution, and Os substitution are the only known perturbations that enhance the HO phase and induce the first-order transition to the LMAFM phase in URu2Si2 We present a scenario in which the application of pressure or the isoelectronic substitution of Fe and Os ions for Ru results in an increase in the hybridization of the U-5f-electron and transition metal d-electron states which leads to electronic instability in the paramagnetic phase and the concurrent formation of HO (and LMAFM) in URu2Si2 Calculations in the tight-binding approximation are included to determine the strength of hybridization between the U-5f-electron states and the d-electron states of Ru and its isoelectronic Fe and Os substituents in URu2Si2.

11.
Inorg Chem ; 60(11): 7815-7826, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33990139

RESUMO

Lanthanides such as europium with more accessible divalent states are useful for studying redox stability afforded by macrocyclic organic ligands. Substituted cryptands, such as 2.2.2B cryptand, that increase the oxidative stability of divalent europium also provide coordination environments that support synthetic alterations of Eu(II) cryptate complexes. Two single crystal structures were obtained containing nine-coordinate Eu(II) 2.2.2B cryptate complexes that differ by a single coordination site, the occupation of which is dictated by changes in reaction conditions. A crystal structure containing a [Eu(2.2.2B)Cl]+ complex is obtained from a methanol-THF solvent mixture, while a methanol-acetonitrile solvent mixture affords a [Eu(2.2.2B)(CH3OH)]2+ complex. While both crystals exhibit the typical blue emission observed in most Eu(II) containing compounds as a result of 4f65d1 to 4f7 transitions, computational results show that the substitution of a Cl- anion in the place of a methanol molecule causes mixing of the 5d excited states in the Eu(II) 2.2.2B cryptate complex. Additionally, magnetism studies reveal the identity of the capping ligand in the Eu(II) 2.2.2B cryptate complex may also lead to exchange between Eu(II) metal centers facilitated by π-stacking interactions within the structure, slightly altering the anticipated magnetic moment. The synthetic control present in these systems makes them interesting candidates for studying less stable divalent lanthanides and the effects of precise modifications of the electronic structures of low valent lanthanide elements.

12.
J Chem Phys ; 154(11): 114707, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752369

RESUMO

Ce-based intermetallics are of interest due to the potential to study the interplay of localized magnetic moments and conduction electrons. Our work on Ce-based germanides led to the identification of a new homologous series An+1MnX3n+1 (A = rare earth, M = transition metal, X = tetrels, and n = 1-6). This work presents the single-crystal growth, structure determination, and anisotropic magnetic properties of the n = 4 member of the Cen+1ConGe3n+1 homologous series. Ce5Co4+xGe13-ySny consists of three Ce sites, three Co sites, seven Ge sites, and two Sn sites, and the crystal structure is best modeled in the orthorhombic space group Cmmm where a = 4.3031(8) Å, b = 45.608(13) Å, and c = 4.3264(8) Å, which is in close agreement with the previously reported Sn-free analog where a = 4.265(1) Å, b = 45.175(9) Å, and c = 4.293(3) Å. Anisotropic magnetic measurements show Kondo-like behavior and three magnetic transitions at 6, 4.9, and 2.4 K for Ce5Co4+xGe13-ySny.

13.
ACS Cent Sci ; 6(11): 2023-2030, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33274279

RESUMO

The localized f-electrons enrich the magnetic properties in rare-earth-based intermetallics. Among those, compounds with heavier 4d and 5d transition metals are even more fascinating because anomalous electronic properties may be induced by the hybridization of 4f and itinerant conduction electrons primarily from the d orbitals. Here, we describe the observation of trivalent Yb3+ with S = 1/2 at low temperatures in Yb x Pt5P, the first of a new family of materials. Yb x Pt5P (0.23 ≤ x ≤ 0.96) phases were synthesized and structurally characterized. They exhibit a large homogeneity width with the Yb ratio exclusively occupying the 1a site in the anti-CeCoIn5 structure. Moreover, a sudden resistivity drop could be found in Yb x Pt5P below ∼0.6 K, which requires further investigation. First-principles electronic structure calculations substantiate the antiferromagnetic ground state and indicate that two-dimensional nesting around the Fermi level may give rise to exotic physical properties, such as superconductivity. Yb x Pt5P appears to be a unique case among materials.

14.
Inorg Chem ; 59(13): 8642-8646, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32623892

RESUMO

With the advent of lanthanide-based technologies, there is a clear need to advance the fundamental understanding of 4f-element chelation chemistry. Herein, we contribute to a growing body of lanthanide chelation chemistry and report the synthesis of bimetallic 4f-element complexes within an imine/hemiacetalate framework, Ln2TPTOMe [Ln = lanthanide; TPTOMe = tris(pyridineimine)(Tren)tris(methoxyhemiacetalate); Tren = tris(2-aminoethylamine)]. These products are generated from hydrolysis and methanolysis of the cage ligand tris(pyridinediimine)bis(Tren) (TPT; Tadanobu et al. Chem. Lett. 1993, 22 (5), 859-862) likely facilitated by inductive effects stemming from the Lewis acidic lanthanide cations. These complexes are interesting because they result from imine cleavage to generate two metal binding sites: one pocketed site within the macrocycle and the other terminal site capping a hemiacetalate moiety. A clear demarcation in reactivity is observed between samarium and europium, where the lighter and larger lanthanides generate a mixture of products, Ln2TPTOMe and LnTPT. Meanwhile, the heavier and smaller lanthanides generate exclusively bimetallic Ln2TPTOMe. The cleavage reactivity to form Ln2TPTOMe was extended beyond methanol to include other primary alcohols.

15.
Inorg Chem ; 59(5): 3079-3084, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32049498

RESUMO

Structural, electrical, and thermal properties of CdSnAs2, with analyses from temperature-dependent transport properties over a large temperature range, are reported. Phase-pure microcrystalline powders were synthesized that were subsequently densified to a high-density homogeneous polycrystalline specimen for this study. Temperature-dependent transport indicates n-type semiconducting behavior with a very high and nearly temperature independent mobility over the entire measured temperature range, attributed to the very small electron effective mass of this material. The Debye model was successfully applied to model the thermal conductivity and specific heat. This work contributes to the fundamental understanding of this material, providing further insight and allowing for investigations into altering this and related physical properties of these materials for technological applications.

16.
Dalton Trans ; 49(7): 2273-2279, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32016192

RESUMO

The synthesis, electronic structure and temperature dependent transport properties of polycrystalline Cu1+xMn2-xInTe4 (x = 0, 0.2, 0.3) are reported for the first time. These quaternary chalcogenides were synthesized by direct reaction of the elements, followed by solid state annealing and hot press densification. The thermal conductivity is low for all specimens and intrinsic to the material system. Furthermore, the off-stoichiometry specimens illustrate the sensitivity of the transport properties to stoichiometry, with a greater than two-orders-of magnitude increase in carrier concentration with increased Cu content. First principles calculations of the electronic structure are also reported, and are in agreement with the experimental data. This fundamental investigation shows the potential towards further optimization of the electrical properties that, in addition to the intrinsically low thermal conductivity, provides a basis for further research into the viability of this material system for potential energy-related applications.

17.
Inorg Chem ; 59(6): 3452-3458, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31939654

RESUMO

MgNi2Bi4 was grown from the reaction of magnesium and nickel in excess bismuth flux. It forms as large, malleable crystals with a new structure type in orthorhombic space group Cmcm. The structure contains a building block common to Ni-Bi binary phases-nickel zigzag chains running along one direction and surrounded by bismuth. Magnetic susceptibility and transport measurements indicate that the compound is metallic; this is supported by calculations of density of states. Crystal orbital Hamilton population analyses indicate that Ni-Bi interactions are the strongest bonding interactions in the structure, whereas Bi-Bi bonding between the layers is negligible, making MgNi2Bi4 a potential two-dimensional material.

18.
Chem Sci ; 11(43): 11811-11817, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34123207

RESUMO

The ground-state of S = 1 kagome lattice antiferromagnets (KLAFs), in the presence of strong geometric frustration and the smallest integer spin, has the potential to host a range of non-trivial magnetic phases including a quantum spin liquid. The effect of local geometry and metal-ion electronic structure on the formation of these predicted phases remain unknown due to, in part, the lack of an ideal analyte. Herein, a kagome lattice compound, (CH3NH3)2NaV3F12 (1-V), featuring a single distinct V3+ (d2) site in the R3̄m space group, was synthesized hydrothermally. In this S = 1, d2 system, the trivalent vanadium ions are tetragonally compressed due to Jahn-Teller distortion. The interlayer methylammonium cations show static positional disorder with three possible orientations. The negative Curie-Weiss temperature and dominant antiferromagnetic interactions make 1-V a candidate to study S = 1 KLAF physics. The frequency-dependence of ac magnetic susceptibility and the heat capacity results suggest that 1-V has a spin glass ground state. This freezing of the spin dynamics may be due to competing exchange interactions, structural imperfection arising from the static disorder of the interlayer methylammonium cations or the presence of 'defect'-like spins.

19.
Sci Adv ; 5(5): eaaw6183, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31172031

RESUMO

Thermoelectricity allows direct conversion between heat and electricity, providing alternatives for green energy technologies. Despite these advantages, for most materials the energy conversion efficiency is limited by the tendency for the electrical and thermal conductivity to be proportional to each other and the Seebeck coefficient to be small. Here we report counter examples, where the heavy fermion compounds YbTM 2Zn20 (TM = Co, Rh, Ir) exhibit enhanced thermoelectric performance including a large power factor (PF = 74 µW/cm-K2; TM = Ir) and a high figure of merit (ZT = 0.07; TM = Ir) at 35 K. The combination of the strongly hybridized electronic state originating from the Yb f-electrons and the novel structural features (large unit cell and possible soft phonon modes) leads to high power factors and small thermal conductivity values. This demonstrates that with further optimization these systems could provide a platform for the next generation of low temperature thermoelectric materials.

20.
Dalton Trans ; 48(16): 5327-5334, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30941388

RESUMO

We present the combined results of single crystal X-ray diffraction, physical properties characterization, and theoretical assessment of EuSnP under high pressure. Single crystals of EuSnP prepared using Sn self-flux crystallize in the tetragonal NbCrN-type crystal structure (S.G. P4/nmm) at ambient pressure. Previous studies have shown that for Eu ions, seven unpaired electrons impart a 2+ oxidation state. Assuming the oxidation states of Eu to be +2 and P to be -3, each Sn will donate one electron, with one p valence electron left for forming a weak Sn-Sn bond. According to the high-pressure single crystal X-ray diffraction measurements, no structural phase transition was observed up to ∼6.2 GPa. Temperature-dependent resistivity measurements up to 2.15 GPa on single crystals indicate that the phase-transition temperature occurring at the Néel temperature (TN) is significantly enhanced under high pressure. The robust crystallography and enhanced antiferromagnetic transition temperatures can be rationalized by the electronic structure calculations and chemical bonding analysis. The increasing Eu-P bonding interaction is consistent with the lattice parameter changing and enhanced TN. Moreover, the molecular orbital diagram shows that the weak Sn-Sn bond can be squeezed under pressure, acting as a compression buffer to stabilize the structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...