Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 7(1)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35225917

RESUMO

Biomimicry education is grounded in a set of natural design principles common to every known lifeform on Earth. These Life's Principles (LPs) (cc Biomimicry 3.8), provide guidelines for emulating sustainable strategies that are field-tested over nearly four billion years of evolution. This study evaluates an exercise for teaching LPs to interdisciplinary students at three universities, Arizona State University (ASU) in Phoenix, Arizona (USA), College of Charleston (CofC) in Charleston, South Carolina (USA) and The Hague University of Applied Sciences (THUAS) in The Hague (The Netherlands) during the spring 2021 semester. Students researched examples of both biological organisms and human designs exhibiting the LPs. We gauged the effectiveness of the exercise through a common rubric and a survey to discover ways to improve instruction and student understanding. Increased student success was found to be directly linked to introducing the LPs with illustrative examples, assigning an active search for examples as part of the exercise, and utilizing direct assessment feedback loops. Requiring students to highlight the specific terms of the LP sub-principles in each example is a suggested improvement to the instructions and rubric. An iterative, face-to-face, discussion-based teaching and learning approach helps overcome minor misunderstandings. Reiterating the LPs throughout the semester with opportunities for application will highlight the potential for incorporating LPs into students' future sustainable design process.

2.
Ecology ; 87(7): 1816-30, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16922330

RESUMO

Studies of facilitation have primarily been limited to single mechanisms, species, or environments. We examined interacting mechanisms governing the facilitative effects of Pinus flexilis on two later successional understory species, Pseudotsuga menziesii and Ribes cereum, in different microhabitats and seasons at the ecotone between the Rocky Mountain forests and Great Plains grasslands in Montana, USA. In field surveys, 69% of Pseudotsuga and 91% of Ribes were located beneath P. flexilis even though P. flexilis subcrowns accounted for a small proportion of available habitat. For three years, we monitored the survival of Pseudotsuga and Ribes seedlings experimentally planted beneath P. flexilis and in the open at a windward and a leeward site. Survival of both species was highest beneath P. flexilis at a site topographically protected from strong unidirectional winds (38% for Pseudotsuga and 63% for Ribes), and lowest at a windward site and in the open where tree crowns did not provide shelter from winds (2% and 6%, respectively). These results suggest that wind amelioration contributed to the facilitative effect of P. flexilis. However, even at the leeward site, where wind speed was low, survival of Pseudotsuga and Ribes was higher beneath P. flexilis, suggesting the importance of shade. To explore the relative importance of different mechanisms, we designed an experiment with six treatments: "shade," "shade + wind," "shade + drift," "wind," "drift," and a "control." After two years, we found shade to be of overwhelming importance for the survival of Pseudotsuga and Ribes. Without shade, no other treatments were significant, but once shade was provided, wind amelioration and snow pack accumulation increased survival of Pseudotsuga, suggesting that these different facilitative mechanisms functioned in a nested hierarchical manner: some mechanisms were important only when others were already functioning. Many studies have demonstrated multiple interacting mechanisms in the way that plants interact, but to our knowledge hierarchical interactive processes have not been previously documented. If the effects of positive or competitive mechanisms are often hierarchical, then studies of isolated mechanisms may not accurately assess their importance in nature.


Assuntos
Ecossistema , Pinus/fisiologia , Pseudotsuga/fisiologia , Ribes/fisiologia , Estações do Ano , Plântula/fisiologia , Solo , Fatores de Tempo , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...