Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Mater Lett ; 5(9): 2408-2421, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37680545

RESUMO

High power conversion efficiencies (PCE), low energy payback time (EPBT), and low manufacturing costs render perovskite solar cells (PSCs) competitive; however, a relatively low operational stability impedes their large-scale deployment. In addition, state-of-the-art PSCs are made of expensive materials, including the organic hole transport materials (HTMs) and the noble metals used as the charge collection electrode, which induce degradation in PSCs. Thus, developing inexpensive alternatives is crucial to fostering the transition from academic research to industrial development. Combining a carbon-based electrode with an inorganic HTM has shown the highest potential and should replace noble metals and organic HTMs. In this review, we illustrate the incorporation of a carbon layer as a back contact instead of noble metals and inorganic HTMs instead of organic ones as two cornerstones for achieving optimal stability and economic viability for PSCs. We discuss the primary considerations for the selection of the absorbing layer as well as the electron-transporting layer to be compatible with the champion designs and ultimate architecture for single-junction PSCs. More studies regarding the long-term stability are still required. Using the recommended device architecture presented in this work would pave the way toward constructing low-cost and stable PSCs.

2.
J Phys Chem Lett ; 11(23): 10188-10195, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33205977

RESUMO

Its lower bandgap makes formamidinium lead iodide (FAPbI3) a more suitable candidate for single-junction solar cells than pure methylammonium lead iodide (MAPbI3). However, its structural and thermodynamic stability is improved by introducing a significant amount of MA and bromide, both of which increase the bandgap and amplify trade-off between the photocurrent and photovoltage. Here, we simultaneously stabilized FAPbI3 into a cubic lattice and minimized the formation of photoinactive phases such as hexagonal FAPbI3 and PbI2 by introducing 5% MAPbBr3, as revealed by synchrotron X-ray scattering. We were able to stabilize the composition (FA0.95MA0.05Cs0.05)Pb(I0.95Br0.05)3, which exhibits a minimal trade-off between the photocurrent and photovoltage. This material shows low energetic disorder and improved charge-carrier dynamics as revealed by photothermal deflection spectroscopy (PDS) and transient absorption spectroscopy (TAS), respectively. This allowed the fabrication of operationally stable perovskite solar cells yielding reproducible efficiencies approaching 22%.

3.
Small ; 15(49): e1904746, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31670469

RESUMO

Today's perovskite solar cells (PSCs) mostly use components, such as organic hole conductors or noble metal back contacts, that are very expensive or cause degradation of their photovoltaic performance. For future large-scale deployment of PSCs, these components need to be replaced with cost-effective and robust ones that maintain high efficiency while ascertaining long-term operational stability. Here, a simple and low-cost PSC architecture employing dopant-free TiO2 and CuSCN as the electron and hole conductor, respectively, is introduced while a graphitic carbon layer deposited at room temperature serves as the back electrical contact. The resulting PSCs show efficiencies exceeding 18% under standard AM 1.5 solar illumination and retain ≈95% of their initial efficiencies for >2000 h at the maximum power point under full-sun illumination at 60 °C. In addition, the CuSCN/carbon-based PSCs exhibit remarkable stability under ultraviolet irradiance for >1000 h while under similar conditions, the standard spiro-MeOTAD/Au based devices degrade severely.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...