Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(11): eadd3243, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36930718

RESUMO

HDAC3 is one of the main targets of histone deacetylase (HDAC) inhibitors in clinical development as cancer therapies, yet the in vivo role of HDAC3 in solid tumors is unknown. We identified a critical role for HDAC3 in Kras-mutant lung cancer. Using genetically engineered mouse models (GEMMs), we found that HDAC3 is required for lung tumor growth in vivo. HDAC3 was found to direct and enhance the transcription effects of the lung cancer lineage transcription factor NKX2-1 to mediate expression of a common set of target genes. We identified FGFR1 as a critical previously unidentified target of HDAC3. Leveraging this, we identified that an HDAC3-dependent transcriptional cassette becomes hyperactivated as Kras/LKB1-mutant cells develop resistance to the MEK inhibitor trametinib, and this can be reversed by treatment with the HDAC1/HDAC3 inhibitor entinostat. We found that the combination of entinostat plus trametinib treatment elicits therapeutic benefit in the Kras/LKB1 GEMM.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Histona Desacetilases , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Piridinas , Histona Desacetilases/genética
2.
Sci Adv ; 7(15)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33827825

RESUMO

The serine/threonine kinase ULK1 mediates autophagy initiation in response to various cellular stresses, and genetic deletion of ULK1 leads to accumulation of damaged mitochondria. Here we identify Parkin, the core ubiquitin ligase in mitophagy, and PARK2 gene product mutated in familial Parkinson's disease, as a ULK1 substrate. Recent studies uncovered a nine residue ("ACT") domain important for Parkin activation, and we demonstrate that AMPK-dependent ULK1 rapidly phosphorylates conserved serine108 in the ACT domain in response to mitochondrial stress. Phosphorylation of Parkin Ser108 occurs maximally within five minutes of mitochondrial damage, unlike activation of PINK1 and TBK1, which is observed thirty to sixty minutes later. Mutation of the ULK1 phosphorylation sites in Parkin, genetic AMPK or ULK1 depletion, or pharmacologic ULK1 inhibition, all lead to delays in Parkin activation and defects in assays of Parkin function and downstream mitophagy events. These findings reveal an unexpected first step in the mitophagy cascade.

3.
Cancer Res ; 80(14): 3046-3056, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32354737

RESUMO

Rhabdomyosarcoma is the most common childhood soft-tissue sarcoma, yet patients with metastatic or recurrent disease continue to do poorly, indicating a need for new treatments. The SRC family tyrosine kinase YES1 is upregulated in rhabdomyosarcoma and is necessary for growth, but clinical trials using single agent dasatinib, a SRC family kinase inhibitor, have failed in sarcomas. YAP1 (YES-associated protein) is highly expressed in rhabdomyosarcoma, driving growth and survival when the upstream Hippo tumor suppressor pathway is silenced, but efforts to pharmacologically inhibit YAP1 have been unsuccessful. Here we demonstrate that treatment of rhabdomyosarcoma with DNA methyltransferase inhibitor (DNMTi) upregulates Hippo activators RASSF1 and RASSF5 by promoter demethylation, activating canonical Hippo signaling and increasing inactivation of YAP1 by phosphorylation. Treatment with DNMTi decreased rhabdomyosarcoma cell growth and increased apoptosis and differentiation, an effect partially rescued by expression of constitutively active YAP (S127A), suggesting the effects of DNMTi treatment are, in part, due to Hippo-dependent inhibition of YAP1. In addition, YES1 and YAP1 interacted in the nucleus of rhabdomyosarcoma cells, and genetic or pharmacologic suppression of YES1 resulted in cytoplasmic retention of YAP1 and decreased YAP1 target gene expression, suggesting YES1 regulates YAP1 in a Hippo-independent manner. Combined treatment with DNMTi and dasatinib targeted both Hippo-dependent and Hippo-independent regulation of YAP1, ablating rhabdomyosarcoma cell growth in vitro and trending toward decreased tumor growth in vivo. These results show that the mechanisms regulating YAP1 in rhabdomyosarcoma can be inhibited by combinatorial therapy of DNMTi and dasatinib, laying the groundwork for future clinical investigations. SIGNIFICANCE: This study elucidates the signaling pathways that regulate the oncogenic protein YAP1 and identifies a combination therapy to target these pathways in the childhood tumor rhabdomyosarcoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Azacitidina/análogos & derivados , Terapia de Alvo Molecular , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Rabdomiossarcoma/tratamento farmacológico , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Azacitidina/farmacologia , Proliferação de Células , Criança , Feminino , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Humanos , Camundongos , Camundongos SCID , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
4.
Cancer Res ; 79(19): 5060-5073, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31431459

RESUMO

Altered cellular metabolism, including an increased dependence on aerobic glycolysis, is a hallmark of cancer. Despite the fact that this observation was first made nearly a century ago, effective therapeutic targeting of glycolysis in cancer has remained elusive. One potentially promising approach involves targeting the glycolytic enzyme lactate dehydrogenase (LDH), which is overexpressed and plays a critical role in several cancers. Here, we used a novel class of LDH inhibitors to demonstrate, for the first time, that Ewing sarcoma cells are exquisitely sensitive to inhibition of LDH. EWS-FLI1, the oncogenic driver of Ewing sarcoma, regulated LDH A (LDHA) expression. Genetic depletion of LDHA inhibited proliferation of Ewing sarcoma cells and induced apoptosis, phenocopying pharmacologic inhibition of LDH. LDH inhibitors affected Ewing sarcoma cell viability both in vitro and in vivo by reducing glycolysis. Intravenous administration of LDH inhibitors resulted in the greatest intratumoral drug accumulation, inducing tumor cell death and reducing tumor growth. The major dose-limiting toxicity observed was hemolysis, indicating that a narrow therapeutic window exists for these compounds. Taken together, these data suggest that targeting glycolysis through inhibition of LDH should be further investigated as a potential therapeutic approach for cancers such as Ewing sarcoma that exhibit oncogene-dependent expression of LDH and increased glycolysis. SIGNIFICANCE: LDHA is a pharmacologically tractable EWS-FLI1 transcriptional target that regulates the glycolytic dependence of Ewing sarcoma.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Glicólise/efeitos dos fármacos , L-Lactato Desidrogenase/antagonistas & inibidores , Sarcoma de Ewing/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Camundongos SCID , Sarcoma de Ewing/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Clin Cancer Res ; 23(23): 7301-7311, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28899971

RESUMO

Purpose: Although many cancers are showing remarkable responses to targeted therapies, pediatric sarcomas, including Ewing sarcoma, remain recalcitrant. To broaden the therapeutic landscape, we explored the in vitro response of Ewing sarcoma cell lines against a large collection of investigational and approved drugs to identify candidate combinations.Experimental Design: Drugs displaying activity as single agents were evaluated in combinatorial (matrix) format to identify highly active, synergistic drug combinations, and combinations were subsequently validated in multiple cell lines using various agents from each class. Comprehensive metabolomic and proteomic profiling was performed to better understand the mechanism underlying the synergy. Xenograft experiments were performed to determine efficacy and in vivo mechanism.Results: Several promising candidates emerged, including the combination of small-molecule PARP and nicotinamide phosphoribosyltransferase (NAMPT) inhibitors, a rational combination as NAMPTis block the rate-limiting enzyme in the production of nicotinamide adenine dinucleotide (NAD+), a necessary substrate of PARP. Mechanistic drivers of the synergistic cell killing phenotype of these combined drugs included depletion of NMN and NAD+, diminished PAR activity, increased DNA damage, and apoptosis. Combination PARPis and NAMPTis in vivo resulted in tumor regression, delayed disease progression, and increased survival.Conclusions: These studies highlight the potential of these drugs as a possible therapeutic option in treating patients with Ewing sarcoma. Clin Cancer Res; 23(23); 7301-11. ©2017 AACR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Citocinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Sarcoma de Ewing/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citocinas/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Sinergismo Farmacológico , Inibidores Enzimáticos/administração & dosagem , Feminino , Humanos , Estimativa de Kaplan-Meier , Camundongos SCID , Nicotinamida Fosforribosiltransferase/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Carga Tumoral/efeitos dos fármacos
6.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852862

RESUMO

Adeno-associated virus (AAV) vectors have made great progress in their use for gene therapy; however, fundamental aspects of AAV's capsid assembly remain poorly characterized. In this regard, the discovery of assembly-activating protein (AAP) sheds new light on this crucial part of AAV biology and vector production. Previous studies have shown that AAP is essential for assembly; however, how its mechanistic roles in assembly might differ among AAV serotypes remains uncharacterized. Here, we show that biological properties of AAPs and capsid assembly processes are surprisingly distinct among AAV serotypes 1 to 12. In the study, we investigated subcellular localizations and assembly-promoting functions of AAP1 to -12 (i.e., AAPs derived from AAV1 to -12, respectively) and examined the AAP dependence of capsid assembly processes of these 12 serotypes using combinatorial approaches that involved immunofluorescence and transmission electron microscopy, barcode-Seq (i. e., a high-throughput quantitative method using DNA barcodes and a next-generation sequencing technology), and quantitative dot blot assays. This study revealed that AAP1 to -12 are all localized in the nucleus with serotype-specific differential patterns of nucleolar association; AAPs and assembled capsids do not necessarily colocalize; AAPs are promiscuous in promoting capsid assembly of other serotypes, with the exception of AAP4, -5, -11, and -12; assembled AAV5, -8, and -9 capsids are excluded from the nucleolus, in contrast to the nucleolar enrichment of assembled AAV2 capsids; and, surprisingly, AAV4, -5, and -11 capsids are not dependent on AAP for assembly. These observations highlight the serotype-dependent heterogeneity of the capsid assembly process and challenge current notions about the role of AAP and the nucleolus in capsid assembly. IMPORTANCE: Assembly-activating protein (AAP) is a recently discovered adeno-associated virus (AAV) protein that promotes capsid assembly and provides new opportunities for research in assembly. Previous studies on AAV serotype 2 (AAV2) showed that assembly takes place in the nucleolus and is dependent on AAP and that capsids colocalize with AAP in the nucleolus during the assembly process. However, through the investigation of 12 different AAV serotypes (AAV1 to -12), we find that AAP is not an essential requirement for capsid assembly of AAV4, -5, and -11, and AAP, assembled capsids, and the nucleolus do not colocalize for all the serotypes. In addition, we find that there are both serotype-restricted and serotype-promiscuous AAPs in their assembly roles. These findings challenge widely held beliefs about the importance of the nucleolus and AAP in AAV assembly and show the heterogeneous nature of the assembly process within the AAV family.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Dependovirus/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Dependovirus/classificação , Dependovirus/ultraestrutura , Expressão Gênica , Teste de Complementação Genética , Vetores Genéticos/genética , Humanos , Sorogrupo , Proteínas Virais/química , Proteínas Virais/genética , Vírion , Replicação Viral
7.
Transl Oncol ; 9(6): 540-547, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27835791

RESUMO

To determine what alternative pathways may act as mechanisms of bypass resistance to type 1 insulin-like growth factor receptor (IGF-1R) blockade in rhabdomyosarcoma (RMS), we compared expression of receptor tyrosine kinase activity in a number of IGF-1R antibody-resistant and -sensitive RMS cell lines. We found that platelet-derived growth factor receptor ß (PDGFR-ß) activity was upregulated in three xenograft-derived IGF-1R antibody-resistant cell lines that arose from a highly sensitive fusion-positive RMS cell line (Rh41). Furthermore, we identified four additional fusion-negative RMS cell lines that similarly upregulated PDGFR-ß activity when selected for IGF-1R antibody resistance in vitro. In the seven cell lines described, we observed enhanced growth inhibition when cells were treated with dual IGF-1R and PDGFR-ß inhibition in vitro. In vivo studies have confirmed the enhanced effect of targeting IGF-1R and PDGFR-ß in several mouse xenograft models of fusion-negative RMS. These findings suggest that PDGFR-ß acts as a bypass resistance pathway to IGF-1R inhibition in a subset of RMS. Therapy co-targeting these receptors may be a promising new strategy in RMS care.

8.
Oncotarget ; 7(40): 65540-65552, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27608846

RESUMO

Long-term survival in patients with metastatic, relapsed, or recurrent Ewing sarcoma and rhabdomyosarcoma is dismal. Irinotecan, a topoisomerase 1 inhibitor, has activity in these sarcomas, but due to poor bioavailability of its active metabolite (SN-38) has had limited clinical efficacy. In this study we have evaluated the efficacy and toxicity of STA-8666, a novel drug conjugate which uses an HSP90 inhibitor to facilitate intracellular, tumor-targeted delivery of the topoisomerase 1 inhibitor SN-38, thus preferentially delivering and concentrating SN-38 within tumor tissue. We present in vivo evidence from mouse xenograft models that STA-8666 results in more persistent inhibition of topoisomerase 1 and prolonged DNA damage compared to irinotecan. This translates into superior antitumor efficacy and survival in multiple aggressive models of both diseases in mouse xenografts, as well as in an irinotecan-resistant model of pediatric osteosarcoma, demonstrated by dramatic tumor shrinkage, durable remission and prolonged complete regressions following short-term treatment, compared to conventional irinotecan. Gene expression analysis performed on xenograft tumors treated with either irinotecan or STA-8666 showed that STA-8666 affected expression of DNA damage and repair genes more robustly than irinotecan. These results suggest that STA-8666 may be a promising new agent for patients with pediatric-type sarcoma.


Assuntos
Antineoplásicos/uso terapêutico , Camptotecina/análogos & derivados , Resorcinóis/uso terapêutico , Rabdomiossarcoma/tratamento farmacológico , Sarcoma de Ewing/tratamento farmacológico , Inibidores da Topoisomerase I/uso terapêutico , Animais , Antineoplásicos/química , Camptotecina/química , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Criança , Dano ao DNA , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Irinotecano , Camundongos , Camundongos Knockout , Camundongos SCID , Resorcinóis/química , Inibidores da Topoisomerase I/química , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...