Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 45(24): 6615-6618, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33325852

RESUMO

We demonstrate the generation of 1.1 J pulses of picosecond duration at 1 kHz repetition rate (1.1 kW average power) from a diode-pumped chirped pulse amplification Yb:YAG laser. The laser employs cryogenically cooled amplifiers to generate λ=1030nm pulses with average power of up to 1.26 kW prior to compression with excellent beam quality. Pulses are compressed to 4.5 ps duration with 90% efficiency. This compact picosecond laser will enable a variety of applications that require high energy ultrashort pulses at kilohertz repetition rates.

2.
Opt Express ; 26(5): 5240-5252, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529729

RESUMO

Heat generation is a key obstacle to scaling high energy solid-state lasers to the multi-kilowatt average powers required for several key applications. We demonstrate an accurate, in situ, noninvasive optical technique to that makes three-dimensional (3-D) temperature maps within cryogenic amplifiers operating at high average power. The temperature is determined by analyzing the fluorescence spectra with a neural network function. The accuracy of the technique relies on a calibration that does not depend on simulations. Results are presented for a cryogenic Yb:YAG active mirror laser amplifier operating at different pump conditions. The technique is applicable to other solid-state lasers materials.

3.
Appl Opt ; 56(4): C136-C139, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158069

RESUMO

Ta2O5/SiO2 high reflection (HR) interference coatings for λ∼1 µm offer superior performance at high irradiance conditions. However, these coatings are not good candidates for high peak power conditions in comparison to HfO2/SiO2 multilayer stacks. Here we show that the modification of the top layers design of a quarter wave Ta2O5/SiO2 high reflector leads to 4-5 fold increase in the laser damage fluence compared to a quarter wave (Ta2O5/SiO2)15 when tested at λ=1.03 µm using pulse durations of 0.19 and 4 ns and peak power densities of 43.5 and 216 GW/cm2. One of the designs achieved a laser damage threshold fluence of 174 J/cm2 at 4 ns, which is 10% higher than that of a HfO2/SiO2 quarter wave design.

4.
Opt Lett ; 41(14): 3339-42, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27420530

RESUMO

We report the demonstration of a diode-pumped chirped pulse amplification Yb:YAG laser that produces λ=1.03 µm pulses of up to 1.5 J energy compressible to sub-5 ps duration at a repetition rate of 500 Hz (750 W average power). Amplification to high energy takes place in cryogenically cooled Yb:YAG active mirrors designed for kilowatt average power laser operation. This compact laser system will enable new advances in high-average-power ultrashort-pulse lasers and high-repetition-rate tabletop soft x-ray lasers. As a first application, the laser was used to pump a 400 Hz λ=18.9 nm laser.

5.
Opt Express ; 21(23): 28380-6, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514347

RESUMO

We report the uninterrupted operation of an 18.9 nm wavelength tabletop soft x-ray laser at 100 Hz repetition rate for extended periods of time. An average power of about 0.1 mW was obtained by irradiating a Mo target with pulses from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Series of up to 1.8 x 10(5) consecutive laser pulses of ~1 µJ energy were generated by displacing the surface of a high shot-capacity rotating molybdenum target by ~2 µm between laser shots. As a proof-of-principle demonstration of the use of this compact ultrashort wavelength laser in applications requiring a high average power coherent beam, we lithographically printed an array of nanometer-scale features using coherent Talbot self-imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...