Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 105(4): 1297-302, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18216263

RESUMO

Development of obesity-associated insulin resistance and diabetes mellitus type 2 has been linked to activation of proinflammatory pathways in the liver, leading to impaired insulin signal transduction. To further define the role of hepatic NF-kappaB activation in this process, we have analyzed glucose metabolism in mice with liver-specific inactivation of the NF-kappaB essential modulator gene (NEMO(L-KO) mice) exposed to a high-fat diet (HFD). These animals are protected from the development of obesity-associated insulin resistance, highlighting the importance of hepatic NF-kappaB activation in this context. However, hepatic NEMO deficiency synergizes with HFD in the development of liver steatosis as a consequence of decreased peroxisome proliferator-activated receptor (PPAR-alpha) and increased PPAR-gamma expression. Steatosis interacts with increased inflammation, causing elevated apoptosis in the livers of these mice under HFD. These changes result in liver tumorigenesis of NEMO(L-KO) mice under normal diet, a process that is largely aggravated when these mice are exposed to HFD. These data directly demonstrate the interaction of hepatic inflammation, dietary composition, and metabolism in the development of liver tumorigenesis.


Assuntos
Gorduras na Dieta/administração & dosagem , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas Experimentais/metabolismo , NF-kappa B/metabolismo , Obesidade/metabolismo , Animais , Fígado Gorduroso/complicações , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Resistência à Insulina/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/fisiologia , Obesidade/complicações , Obesidade/genética , Aumento de Peso/genética
2.
Cell Metab ; 3(4): 247-56, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16581002

RESUMO

Inflammatory processes play an important role in the pathogenesis of vascular diseases, and insulin-resistant diabetes mellitus type 2 represents an important risk factor for the development of atherosclerosis. To directly address the role of insulin resistance in myeloid lineage cells in the development of atherosclerosis, we have created mice with myeloid lineage-specific inactivation of the insulin receptor gene. On an ApoE-deficient background, MphIRKO mice developed smaller atherosclerotic lesions. There was a dramatic decrease in LPS-stimulated IL-6 and IL-1beta expression in the presence of macrophage autonomous insulin resistance. Consistently, while insulin-resistant IRS-2-deficient mice on an ApoE-deficient background display aggravated atherosclerosis, fetal liver cell transplantation of IRS-2(-/-) ApoE(-/-) cells ameliorated atherosclerosis in Apo-E-deficient mice. Thus, systemic versus myeloid cell-restricted insulin resistance has opposing effects on the development of atherosclerosis, providing direct evidence that myeloid lineage autonomous insulin signaling provides proinflammatory signals predisposing to the development of atherosclerosis.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/prevenção & controle , Resistência à Insulina/fisiologia , Insulina/fisiologia , Células Mieloides/fisiologia , Transferência Adotiva , Animais , Apolipoproteínas E/fisiologia , Aterosclerose/etiologia , Aterosclerose/fisiopatologia , Western Blotting , Linhagem Celular , Linhagem da Célula , Imunoprecipitação , Interleucina-1/fisiologia , Interleucina-6/fisiologia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Insulina/genética , Receptor de Insulina/fisiologia , Transdução de Sinais
3.
J Immunol ; 174(9): 5516-25, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15843550

RESUMO

The IGF-1 receptor (IGF-1R) is expressed on T and B lymphocytes, and the expression of the insulin- and IGF-1-signaling machinery undergoes defined changes throughout lineage differentiation, offering a putative role for IGF-1 in the regulation of immune responses. To study the role of the IGF-1R in lymphocyte differentiation and function in vivo, we have reconstituted immunodeficient RAG2-deficient mice with IGF-1R(-/-) fetal liver cells. Despite the absence of IGF-1Rs, the development and ex vivo activation of B and T lymphocytes were unaltered in these chimeric mice. By contrast, the humoral immune response to the T cell-independent type 2 Ag 4-hydroxy-3-nitrophenyl acetyl-Ficoll was significantly reduced in mice reconstituted with IGF-1R-deficient fetal liver cells, whereas responses to the T cell-dependent Ag 4-hydroxy-3-nitrophenyl acetyl-chicken globulin were normal. Moreover, in an in vitro model of T cell-independent type 2 responses, IGF-1 promoted Ig production potently upon polyvalent membrane-IgD cross-linking. These data indicate that functional IGF-1R signaling is required for T cell-independent B cell responses in vivo, defining a novel regulatory mechanism for the immune response against bacterial polysaccharides.


Assuntos
Antígenos T-Independentes/imunologia , Antígenos T-Independentes/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Fator de Crescimento Insulin-Like I/fisiologia , Receptor IGF Tipo 1/fisiologia , Animais , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/enzimologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Transplante de Tecido Fetal/imunologia , Ficoll/administração & dosagem , Ficoll/imunologia , Imunoglobulinas/biossíntese , Fator de Crescimento Insulin-Like I/metabolismo , Transplante de Fígado/imunologia , Ativação Linfocitária/genética , Linfopoese/genética , Linfopoese/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitrofenóis/administração & dosagem , Nitrofenóis/imunologia , Fenilacetatos , Fosforilação , Fosfotirosina/metabolismo , Quimera por Radiação/imunologia , Receptor IGF Tipo 1/deficiência , Receptor IGF Tipo 1/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Regulação para Cima/genética , Regulação para Cima/imunologia
4.
J Clin Invest ; 113(3): 474-81, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14755344

RESUMO

The inhibitor of NF-kappaB (IkappaB) kinases (IKK1[alpha] and IKK2[beta]), the catalytic subunits of the IKK complex, phosphorylate IkappaB proteins on serine residues, targeting them for degradation and thus activating the transcription factor NF-kappaB. More recently, IKK2 has been implicated in mediation of insulin resistance caused by obesity, lipid infusion, and TNF-alpha stimulation, since salicylate and aspirin, known inhibitors of IKK activity, can reverse insulin resistance in obese mouse models. To further genetically elucidate the role of IKK2 in obesity-mediated insulin resistance, we have conditionally inactivated the mouse IKK2 gene in adult myocytes by Cre-loxP-mediated recombination in vivo. We have investigated the development of obesity-induced insulin resistance in muscle-specific IKK2 knockout mice and mice exhibiting a 50% reduction of IKK2 expression in every tissue and have found that, after gold thioglucose treatment, wild-type and mutant mice developed obesity to a similar extent. Surprisingly, no difference in obesity-induced insulin resistance was detectable, either at a physiological or at a molecular level. Moreover, impaired glucose tolerance resulting from a high-fat diet occurred to the same degree in control and IKK2 mutant mice. These data argue against a substantial role for muscular IKK2 in mediating obesity-induced insulin resistance in these models in vivo.


Assuntos
Resistência à Insulina/fisiologia , Obesidade/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Aurotioglucose/metabolismo , Quinase I-kappa B , Insulina/metabolismo , Camundongos , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...