Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7999): 542-548, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109940

RESUMO

The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission.


Assuntos
Desenho de Fármacos , Ligantes , Nanopartículas Metálicas , Pontos Quânticos , Acetona/química , Álcoois/química , Ânions , Compostos de Cálcio/química , Cátions , Coloides/química , Chumbo , Medições Luminescentes , Espectroscopia de Ressonância Magnética , Nanopartículas Metálicas/química , Simulação de Dinâmica Molecular , Óxidos/química , Fosfolipídeos/química , Pontos Quânticos/química , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/química
2.
Chem Mater ; 33(15): 5962-5973, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34393361

RESUMO

CsPbBr3 nanocrystals (NCs) suffer from instabilities caused by the dynamic and labile nature of both the inorganic core and the organic-inorganic interface. Surface ligand engineering thus remains an imminent research topic. In this study, classical molecular dynamics simulations with an explicit solvent are used to gain insights into the inherent binding properties of three different alkylammonium ligands-primary dodecylammonium (DA), secondary didodecylammonium (DDA), and quaternary dimethyldi- dodecylammonium (DMDDA). Our simulations uncover three main factors that govern the effective ligand-substrate interactions: (i) the ability of the head-group to penetrate into the binding pocket, (ii) the strength of head-group interactions with the polar solvent, and (iii) the higher barrier for ligand adsorption/desorption in the case of multiple alkyl chains. The interplay between these factors causes the following order of the binding free energies: DDA < DA ≈ DMDDA, while surface capping with DDA and DMDDA ligands is additionally stabilized by the kinetic barrier. These findings are in agreement with previous experimental observations and with the results of presented ligand-exchange experiments, wherein DDA is found to loosely bind to the CsPbBr3 surface, while DMDDA capping is more stable than capping with the primary oleylammonium ligand. The presented mechanistic understanding of the ligand-NC interactions will aid in the design of cationic ligands that make perovskite NC surfaces more robust.

3.
J Phys Chem B ; 118(50): 14578-89, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25485693

RESUMO

Folding and aggregation lie on competing reaction pathways in proteins. Altering the occupancy of one pathway is automatically relayed to the other pathway, leading to a shift in the balance between the two processes. In particular, it is known that the stabilization of the native state through mutations or solvent alterations is able to halt aggregation. In this work, we explore the feasibility of using external electric field as an agent preventing aggregation through the promotion of folding. We use an atomically accurate protein model and computer simulations to investigate folding and aggregation of alanine polypeptides in electric field of varying strength. The studied peptides are mostly unstructured in the absence of the field but experience a transition into α-helical states when the field is applied. The transition is accompanied by the disassembly of preseeded stacked ß-sheets, which are used as a model of amyloid fibrils, suggesting that electric field can be employed to control aggregation propensity of intrinsically disordered peptides. According to our calculations, the strength of the field required for the disaggregation could be suitable for both controlled in vitro experiments as well as for experiments on live cells. Additionally, our estimates suggest that endogenous electric fields may have a significant effect on in vivo amyloid formation.

4.
Commun Comput Phys ; 13(2013): 129-149, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23833681

RESUMO

We recently developed the Image-Charge Solvation Model (ICSM), which is an explicit/implicit hybrid model to accurately account for long-range electrostatic forces in molecular dynamics simulations [Lin et al., J. Chem. Phys., 131, 154103, 2009]. The ICSM has a productive spherical volume within the simulation cell for which key physical properties of bulk water are reproduced, such as density, radial distribution function, diffusion constants and dielectric properties. Although the reaction field (RF) is essential, it typically accounts for less than 2% of the total electrostatic force on a water molecule. This observation motivates investigating further the role of the RF within the ICSM. In this report we focus on distributions of forces and torques on water molecules as a function of distance from the origin and make extensive tests over a range of model parameters where Coulomb forces are decomposed into direct interactions from waters modeled explicitly and the RF. Molecular torques due to the RF typically account for 20% of the total torque, revealing why the RF plays an important role in the dielectric properties of simulated water. Moreover, it becomes clear that the buffer layer in the ICSM is essential to mitigate artifacts caused by the discontinuous change in dielectric constants at the explicit/implicit interface.

5.
J Chem Phys ; 138(6): 064102, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23425456

RESUMO

Increasingly, theoretical studies of proteins focus on large systems. This trend demands the development of computational models that are fast, to overcome the growing complexity, and accurate, to capture the physically relevant features. To address this demand, we introduce a protein model that uses all-atom architecture to ensure the highest level of chemical detail while employing effective pair potentials to represent the effect of solvent to achieve the maximum speed. The effective potentials are derived for amino acid residues based on the condition that the solvent-free model matches the relevant pair-distribution functions observed in explicit solvent simulations. As a test, the model is applied to alanine polypeptides. For the chain with 10 amino acid residues, the model is found to reproduce properly the native state and its population. Small discrepancies are observed for other folding properties and can be attributed to the approximations inherent in the model. The transferability of the generated effective potentials is investigated in simulations of a longer peptide with 25 residues. A minimal set of potentials is identified that leads to qualitatively correct results in comparison with the explicit solvent simulations. Further tests, conducted for multiple peptide chains, show that the transferable model correctly reproduces the experimentally observed tendency of polyalanines to aggregate into ß-sheets more strongly with the growing length of the peptide chain. Taken together, the reported results suggest that the proposed model could be used to succesfully simulate folding and aggregation of small peptides in atomic detail. Further tests are needed to assess the strengths and limitations of the model more thoroughly.


Assuntos
Modelos Moleculares , Proteínas/química , Alanina/química , Simulação por Computador , Peptídeos/química , Solventes
6.
Comput Phys Commun ; 184(1): 19-26, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23087451

RESUMO

We present an order N method for calculating electrostatic interactions that has been integrated into the molecular dynamics portion of the TINKER Molecular Modeling package. This method, introduced in a previous paper [J. Chem. Phys. 131 (2009) 154103] and termed the Image-Charge Solvation Model (ICSM), is a hybrid electrostatic approach that combines the strengths of both explicit and implicit representations of the solvent. A multiple-image method is used to calculate reaction fields due to the implicit part while the Fast Multipole Method (FMM) is used to calculate the Coulomb interactions for all charges, including the explicit part. The integrated package is validated through test simulations of liquid water. The results are compared with those obtained by the Particle Mesh Ewald (PME) method that is built in the TINKER package. Timing performance of TINKER with the integrated ICSM is benchmarked on bulk water as a function of the size of the system. In particular, timing analysis results show that the ICSM outperforms the PME for sufficiently large systems with the break-even point at around 30,000 particles in the simulated system.

7.
Proteins ; 80(12): 2701-10, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22855405

RESUMO

Upon ATP binding, myosin motor protein is found in two alternative conformations, prerecovery state M* and postrecovery state M**. The transition from one state to the other, known as the recovery stroke, plays a key role in the myosin functional cycle. Despite much recent research, the microscopic details of this transition remain elusive. A critical step in the recovery stroke is the rotation of the converter domain from "up" position in prerecovery state to "down" position in postrecovery state that leads to the swing of the lever arm attached to it. In this work, we demonstrate that the two rotational states of the converter domain are determined by the interactions within a small structural motif in the force-generating region of the protein that can be accurately modeled on computers using atomic representation and explicit solvent. Our simulations show that the transition between the two states is controlled by a small helix (SH1) located next to the relay helix and relay loop. A small translation in the position of SH1 away from the relay helix is seen to trigger the transition from "up" state to "down" state. The transition is driven by a cluster of hydrophobic residues I687, F487, and F506 that make significant contributions to the stability of both states. The proposed mechanism agrees well with the available structural and mutational studies.


Assuntos
Modelos Químicos , Miosinas/química , Miosinas/metabolismo , Fenômenos Biomecânicos , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estrutura Terciária de Proteína , Domínios de Homologia de src
8.
Proteins ; 80(6): 1569-81, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22411190

RESUMO

Myosin motor protein exists in two alternative conformations, prerecovery state M* and postrecovery state M**, on adenosine triphosphate binding. The details of the M*-to-M** transition, known as the recovery stroke to reflect its role as the functional opposite of the force-generating power stroke, remain elusive. The defining feature of the postrecovery state is a kink in the relay helix, a key part of the protein involved in force generation. In this article, we determine the interactions that are responsible for the appearance of the kink. We design a series of computational models that contain three other segments, relay loop, converter domain, and Src homology 1 (SH1) domain helix, with which relay helix interacts and determine their structure in accurate replica exchange molecular dynamics simulations in explicit solvent. By conducting an exhaustive combinatorial search among different models, we find that: (1) the converter domain must be attached to the relay helix during the transition, so it does not interfere with other parts of the protein and (2) the structure of the relay helix is controlled by SH1 helix. The kink is strongly coupled to the position of SH1 helix. It arises as a result of direct interactions between SH1 and the relay helix and leads to a rotation of the C-terminal part of the relay helix, which is subsequently transmitted to the converter domain.


Assuntos
Miosina Tipo II/química , Domínios de Homologia de src , Sequência de Aminoácidos , Cristalografia , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Miosina Tipo II/metabolismo , Estrutura Secundária de Proteína
9.
Protein Sci ; 20(12): 2013-22, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21922589

RESUMO

The recovery stroke is a key step in the functional cycle of muscle motor protein myosin, during which pre-recovery conformation of the protein is changed into the active post-recovery conformation, ready to exersice force. We study the microscopic details of this transition using molecular dynamics simulations of atomistic models in implicit and explicit solvent. In more than 2 µs of aggregate simulation time, we uncover evidence that the recovery stroke is a two-step process consisting of two stages separated by a time delay. In our simulations, we directly observe the first stage at which switch II loop closes in the presence of adenosine triphosphate at the nucleotide binding site. The resulting configuration of the nucleotide binding site is identical to that detected experimentally. Distribution of inter-residue distances measured in the force generating region of myosin is in good agreement with the experimental data. The second stage of the recovery stroke structural transition, rotation of the converter domain, was not observed in our simulations. Apparently it occurs on a longer time scale. We suggest that the two parts of the recovery stroke need to be studied using separate computational models.


Assuntos
Simulação de Dinâmica Molecular , Miosina Tipo II/química , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Miosina Tipo II/metabolismo , Conformação Proteica , Solventes
10.
J Mol Model ; 17(11): 2883-93, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21311933

RESUMO

The performance of the reaction-field method of electrostatics is tested in molecular dynamics simulations of protein human interleukin-4 and a short DNA fragment in explicit solvent. Two truncation schemes are considered: one based on the position of atomic charges in water molecules and the other on the position of groups of charges. The group-based truncation leads to the melting of the DNA double helix. In contrast, the atom-based truncation maintains the helical structure intact. Similarly for the protein, the group-based truncation leads to an unfolding at pH 2 while the atom-based truncation produces stable trajectories at low and normal pH, in agreement with experiment. Artificial repulsion between charged residues associated with the group-based truncation is identified as the microscopic reason behind unfolding of the protein. Implications of different truncation schemes in reaction-field simulations of biomolecules are discussed.


Assuntos
DNA/química , Interleucina-4/química , Simulação de Dinâmica Molecular , Humanos , Concentração de Íons de Hidrogênio , Conformação de Ácido Nucleico , Conformação Proteica , Desdobramento de Proteína , Solventes/química , Eletricidade Estática , Água/química
11.
J Chem Phys ; 134(4): 044105, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21280685

RESUMO

In a preceding paper [J. Chem. Phys. 131, 154103 (2009)], we introduced a new, hybrid explicit/implicit method to treat electrostatic interactions in computer simulations, and tested its performance for liquid water. In this paper, we report further tests of this method, termed the image-charge solvation model (ICSM), in simulations of ions solvated in water. We find that our model can faithfully reproduce known solvation properties of sodium and chloride ions. The charging free energy of a single sodium ion is in excellent agreement with the estimates by other electrostatics methods, while offering much lower finite-size errors. Similarly, the potentials of mean force computed for Na-Cl, Na-Na, and Cl-Cl pairs closely reproduce those reported previously. Collectively, our results demonstrate the superior accuracy of the proposed ICSM method for simulations of mixed media.


Assuntos
Íons/química , Simulação de Dinâmica Molecular , Solventes/química , Tamanho da Partícula , Soluções/química , Eletricidade Estática , Termodinâmica , Água/química
12.
J Mol Biol ; 389(5): 921-37, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19414017

RESUMO

Short fragments of amyloidogenic proteins are widely used as model systems in studies of amyloid formation. Fragment 11-25 of the amyloid beta protein involved in Alzheimer's disease (Abeta11-25) was recently shown to form amyloid fibrils composed of anti-parallel beta-sheets. Interestingly, fibrils grown under neutral and acidic conditions were seen to possess different registries of their inter-beta-strand hydrogen bonds. In an effort to explain the microscopic origin of this pH dependence, we studied Abeta11-25 fibrils using methods of theoretical modeling. Several structural models were built for fibrils at low and neutral pH levels and these were examined in short molecular dynamics simulations in explicit water. The models that displayed the lowest free energy, as estimated using an implicit solvent model, were selected as representative of the true fibrillar structure. It was shown that the registry of these models agrees well with the experimental results. At neutral pH, the main contribution to the free energy difference between the two registries comes from the electrostatic interactions. The charge group of the carboxy terminus makes a large contribution to these interactions and thus appears to have a critical role in determining the registry.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Amiloide/química , Amiloide/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Simulação por Computador , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Secundária de Proteína , Eletricidade Estática
13.
J Phys Chem B ; 113(17): 6041-6, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19341254

RESUMO

The structure of the 21-30 fragment of the amyloid beta-protein (Abeta) was investigated by ion mobility mass spectrometry and replica exchange dynamics simulations. Mutations associated with familial Alzheimer's disease (E22G, E22Q, E22K, and D23N) of Abeta(21-30) were also studied, in order to understand any structural changes that might occur with these substitutions. The structure of the WT peptide shows a bend and a perpendicular turn in the backbone which is maintained by a network of D23 hydrogen bonding. Results for the mutants show that substitutions at E22 do little to alter the overall structure of the fragment. A substitution at D23 resulted in a change of structure for Abeta(21-30). A comparison of these gas-phase studies to previous solution-phase studies reveals that the peptide can fold in the absence of solvent to a structure also seen in solution, highlighting the important role of the D23 hydrogen bonding network in stabilizing the fragment's folded structure.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Peptídeos beta-Amiloides/genética , Simulação por Computador , Gases/química , Ligação de Hidrogênio , Modelos Químicos , Modelos Moleculares , Mutação , Fragmentos de Peptídeos/genética , Soluções , Espectrometria de Massas por Ionização por Electrospray
14.
J Chem Phys ; 130(10): 104106, 2009 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-19292522

RESUMO

The performance of reaction-field methods to treat electrostatic interactions is tested in simulations of ions solvated in water. The potential of mean force between sodium chloride pair of ions and between side chains of lysine and aspartate are computed using umbrella sampling and molecular dynamics simulations. It is found that in comparison with lattice sum calculations, the charge-group-based approaches to reaction-field treatments produce a large error in the association energy of the ions that exhibits strong systematic dependence on the size of the simulation box. The atom-based implementation of the reaction field is seen to (i) improve the overall quality of the potential of mean force and (ii) remove the dependence on the size of the simulation box. It is suggested that the atom-based truncation be used in reaction-field simulations of mixed media.


Assuntos
Simulação por Computador , Íons/química , Modelos Moleculares , Água/química , Ácido Aspártico , Lisina , Cloreto de Sódio , Eletricidade Estática
15.
J Chem Phys ; 131(15): 154103, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20568843

RESUMO

In this paper, a new solvation model is proposed for simulations of biomolecules in aqueous solutions that combines the strengths of explicit and implicit solvent representations. Solute molecules are placed in a spherical cavity filled with explicit water, thus providing microscopic detail where it is most needed. Solvent outside of the cavity is modeled as a dielectric continuum whose effect on the solute is treated through the reaction field corrections. With this explicit/implicit model, the electrostatic potential represents a solute molecule in an infinite bath of solvent, thus avoiding unphysical interactions between periodic images of the solute commonly used in the lattice-sum explicit solvent simulations. For improved computational efficiency, our model employs an accurate and efficient multiple-image charge method to compute reaction fields together with the fast multipole method for the direct Coulomb interactions. To minimize the surface effects, periodic boundary conditions are employed for nonelectrostatic interactions. The proposed model is applied to study liquid water. The effect of model parameters, which include the size of the cavity, the number of image charges used to compute reaction field, and the thickness of the buffer layer, is investigated in comparison with the particle-mesh Ewald simulations as a reference. An optimal set of parameters is obtained that allows for a faithful representation of many structural, dielectric, and dynamic properties of the simulated water, while maintaining manageable computational cost. With controlled and adjustable accuracy of the multiple-image charge representation of the reaction field, it is concluded that the employed model achieves convergence with only one image charge in the case of pure water. Future applications to pKa calculations, conformational sampling of solvated biomolecules and electrolyte solutions are briefly discussed.


Assuntos
Simulação de Dinâmica Molecular , Eletricidade Estática , Água/química , Soluções
16.
J Mol Biol ; 381(1): 221-8, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18597778

RESUMO

The effect of single amino acid substitutions associated with the Italian (E22K), Arctic (E22G), Dutch (E22Q) and Iowa (D23N) familial forms of Alzheimer's disease and cerebral amyloid angiopathy on the structure of the 21-30 fragment of the Alzheimer amyloid beta-protein (Abeta) is investigated by replica-exchange molecular dynamics simulations. The 21-30 segment has been shown in our earlier work to adopt a bend structure in solution that may serve as the folding nucleation site for Abeta. Our simulations reveal that the 24-28 bend motif is retained in all E22 mutants, suggesting that mutations involving residue E22 may not affect the structure of the folding nucleation site of Abeta. Enhanced aggregation in Abeta with familial Alzheimer's disease substitutions may result from the depletion of the E22-K28 salt bridge, which destabilizes the bend structure. Alternately, the E22 mutations may affect longer-range interactions outside the 21-30 segment that can impact the aggregation of Abeta. Substituting at residue D23, on the other hand, leads to the formation of a turn rather than a bend motif, implying that in contrast to E22 mutants, the D23N mutant may affect monomer Abeta folding and subsequent aggregation. Our simulations suggest that the mechanisms by which E22 and D23 mutations affect the folding and aggregation of Abeta are fundamentally different.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Mutação/genética , Dobramento de Proteína , Peptídeos beta-Amiloides/química , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína
17.
Proc Natl Acad Sci U S A ; 105(16): 6027-32, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18408165

RESUMO

Amyloid fibrils, large ordered aggregates of amyloid beta proteins (Abeta), are clinical hallmarks of Alzheimer's disease (AD). The aggregation properties of amyloid beta proteins can be strongly affected by single-point mutations at positions 22 and 23. The Dutch mutation involves a substitution at position 22 (E22Q) and leads to increased deposition rates of the AbetaE22Q peptide onto preseeded fibrils. We investigate the effect of the E22Q mutation on two key regions involved in the folding and aggregation of the Abeta peptide through replica exchange molecular dynamics simulations of the 15-28 fragment of the Abeta peptide. The Abeta15-28 peptide encompasses the 22-28 region that constitutes the most structured part of the Abeta peptide (the E22-K28 bend), as well as the central hydrophobic cluster (CHC) (segment 17-21), the primary docking site for Abeta monomers depositing onto fibrils. Our simulations show that the 22-28 bend is preserved in the Abeta(15-28) peptide and that the CHC, which is mostly unstructured, interacts with this bend region. The E22Q mutation does not affect the structure of the bend but weakens the interactions between the CHC and the bend. This leads to an increased population of beta-structure in the CHC. Our analysis of the fibril elongation reaction reveals that the CHC adopts a beta-strand conformation in the transition state ensemble, and that the E22Q mutation increases aggregation rates by lowering the barrier for Abeta monomer deposition onto a fibril. Thermodynamic signatures of this enhanced fibrillization process from our simulations are in good agreement with experimental observations.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Mutação de Sentido Incorreto , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Entropia , Ácido Glutâmico/química , Ácido Glutâmico/genética , Glutamina/química , Glutamina/genética , Humanos , Dados de Sequência Molecular , Países Baixos , Conformação Proteica , Dobramento de Proteína , População Branca/genética
18.
J Comput Phys ; 227(24): 10162-10177, 2008 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-20027201

RESUMO

In this paper, a new method for calculating effective atomic radii within the generalized Born (GB) model of implicit solvation is proposed, for use in computer simulations of bio-molecules. First, a new formulation for the GB radii is developed, in which smooth kernels are used to eliminate the divergence in volume integrals intrinsic in the model. Next, the Fast Fourier Transform (FFT) algorithm is applied to integrate smoothed functions, taking advantage of the rapid spectral decay provided by the smoothing. The total cost of the proposed algorithm scales as O(N(3)logN + M) where M is the number of atoms comprised in a molecule, and N is the number of FFT grid points in one dimension, which depends only on the geometry of the molecule and the spectral decay of the smooth kernel but not on M. To validate our algorithm, numerical tests are performed for three solute models: one spherical object for which exact solutions exist and two protein molecules of differing size. The tests show that our algorithm is able to reach the accuracy of other existing GB implementations, while offering much lower computational cost.

19.
J Chem Phys ; 126(9): 095101, 2007 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17362129

RESUMO

Surface-tethered proteins are increasingly being used in a variety of experimental situations, and they are the basis for many new technologies. Nevertheless, a thorough understanding of how a surface can impact the native state stability of an attached protein is lacking. In this work, the authors use molecular dynamics simulations of a model beta-barrel protein to investigate how surface tethering influences native state stability. They find that stability, as measured by the folding temperature Tf, can be either increased, decreased, or remain unchanged as a result of tethering. Observed shifts are highly dependent on the location of residue used as the tether point, and stability is influenced by a number of factors, both energetic and entropic. These factors include native state vibrations, loss of bulk unfolded conformations, changes to the unfolded state ensemble, and the emergence of an entropic term not present for the bulk protein. They discuss each of these contributions in detail and comment on their relative importance and connection to experiment.


Assuntos
Modelos Químicos , Proteínas/química , Adsorção , Simulação por Computador , Interpretação Estatística de Dados
20.
J Mol Biol ; 366(1): 275-85, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17166516

RESUMO

The conformational states sampled by the Alzheimer amyloid beta (10-35) (Abeta 10-35) peptide were probed using replica-exchange molecular dynamics (REMD) simulations in explicit solvent. The Abeta 10-35 peptide is a fragment of the full-length Abeta 40/42 peptide that possesses many of the amyloidogenic properties of its full-length counterpart. Under physiological temperature and pressure, our simulations reveal that the Abeta 10-35 peptide does not possess a single unique folded state. Rather, this peptide exists as a mixture of collapsed globular states that remain in rapid dynamic equilibrium with each other. This conformational ensemble is dominated by random coil and bend structures with insignificant presence of an alpha-helical or beta-sheet structure. The 3D structure of Abeta 10-35 is seen to be defined by a salt bridge formed between the side-chains of K28 and D23. This salt bridge is also observed in Abeta fibrils and our simulations suggest that monomeric conformations of Abeta 10-35 contain pre-folded structural motifs that promote rapid aggregation of this peptide.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Modelos Moleculares , Fragmentos de Peptídeos/química , Técnicas de Réplica/métodos , Algoritmos , Sequência de Aminoácidos , Simulação por Computador , Sondas de DNA , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Dobramento de Proteína , Solventes , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...