Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(24): 28239-28246, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35679607

RESUMO

Polyimide hybrid nanocomposites with the polyimide confined at molecular length scales exhibit enhanced fracture resistance with excellent thermal-oxidative stability at low density. Previously, polyimide nanocomposites were fabricated by infiltration of a polyimide precursor into a nanoporous matrix followed by sequential thermally induced imidization and cross-linking of the polyimide under nanometer-scale confinement. However, byproducts formed during imidization became volatile at the cross-linking temperature, limiting the polymer fill level and degrading the nanocomposite fracture resistance. This is solved in the present work with an easier approach where the nanoporous matrix is filled with shorter preimidized polyimide chains that are cross-linked while in the pores to eliminate the need for confined imidization reactions, which produces better results compared to the previous study. In addition, we selected a preimidized polyimide that has a higher chain mobility and a stronger interaction with the matrix pore surface. Consequently, the toughness achieved with un-cross-linked preimidized polyimide chains in this work is equivalent to that achieved with the cross-linking of the previously used polyimide chains and is doubled when preimidized polyimide chains are cross-linked. The increased chain mobility enables more efficient polymer filling and higher polymer fill levels. The higher polymer-pore surface interaction increases the energy dissipation during polyimide molecular bridging, increasing the nanocomposite fracture resistance. The combination of the higher polymer fill and the stronger polymer-surface interaction is shown to provide significant improvements to the nanocomposite fracture resistance and is validated with a molecular bridging model.

2.
Sensors (Basel) ; 21(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806364

RESUMO

This work presents the design and fabrication of two multi-element structurally embedded vascular antennas (SEVAs). These are achieved through advances in additively manufactured sacrificial materials and demonstrate the ability to embed vascular microchannels in both planar and complex-curved epoxy-filled quartz fiber structural composite panels. Frequency-reconfigurable antennas are formed by these structures through the pressure-driven transport of liquid metal through the embedded microchannels. The planar multi-layer topology examines the ability to fabricate two co-located radiating structures separated by a single ply of quartz fabric within the composite layup. The multi-element linear array topology composed of microchannels embedded on to a single-layer are used to demonstrate the ability to conformally-integrate these channels into a complex curved surface that mimics an array of antennas on the leading edge of an Unmanned Aerial Vehicle (UAV). A parallel-strip antipodal dipole feed structure provides excitation and serves as the interface for fluid displacement within the microchannels to facilitate reconfiguration. The nominal design of the SEVAs achieve over a decade of frequency reconfiguration with respect to the fundamental dipole mode of the antenna. Experimental and predicted results demonstrate the operation for canonical states of the antennas. Additional results for the array topology demonstrate beam steering and contiguous operation of interconnected elements in the multi-element structure.

3.
Langmuir ; 35(26): 8758-8768, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31244252

RESUMO

Extrusion-based additive manufacturing methods, such as direct-write of carbon fiber-reinforced epoxy inks, have become an attractive route toward development of structural composites in recent years, because of emerging techniques such as big area additive manufacturing. The development of improved materials for these methods has been a major focus area; however, an understanding of the effects of the printing process on the structural and dynamic recovery in printed materials remains largely unexplored. The goal of this work is to capture multiscale and temporal morphology and dynamics within thermosetting composite inks to determine the parameters during the printing process that influence the recovery of the printed material. Herein, we use X-ray photon correlation spectroscopy in small-angle scattering geometry to reveal both morphology and recovery dynamics of a nanoparticle (layered-silicate Cloisite 30B) in a thermoset epoxy resin (EPON 826) during the printing process in real time. Our results show that the dynamics of the layered silicate particles during recovery are anisotropic and slow down to behavior which is characteristic of aging in colloidal clay suspensions around  tage ≈ 12 s. The dynamics and alignment of the particles during recovery were tempo-spatially mapped, and the recovery post printing was shown to be strongly influenced by the deposition onto the build plate in addition to the extrusion through the print head. Our in operando results provide insight into the parameters that must be considered when optimizing materials and methods for precisely tailored local properties during 3D printing.

4.
Nano Lett ; 17(11): 7040-7044, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28991490

RESUMO

In this work, we exploit a confinement-induced molecular synthesis and a resulting bridging mechanism to create confined polyimide thermoset nanocomposites that couple molecular confinement-enhanced toughening with an unprecedented combination of high-temperature properties at low density. We describe a synthesis strategy that involves the infiltration of individual polymer chains through a nanoscale porous network while simultaneous imidization reactions increase the molecular backbone stiffness. In the extreme limit where the confinement length scale is much smaller than the polymer's molecular size, confinement-induced molecular mechanisms give rise to exceptional mechanical properties. We find that polyimide oligomers can undergo cross-linking reactions even in such molecular-scale confinement, increasing the molecular weight of the organic phase and toughening the nanocomposite through a confinement-induced energy dissipation mechanism. This work demonstrates that the confinement-induced molecular bridging mechanism can be extended to thermoset polymers with multifunctional properties, such as excellent thermo-oxidative stability and high service temperatures (>350 °C).

5.
Bioinspir Biomim ; 11(6): 066006, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27831933

RESUMO

Distributed arrays of artificial hair sensors have bio-like sensing capabilities to obtain spatial and temporal surface flow information which is an important aspect of an effective fly-by-feel system. The spatiotemporal surface flow measurement enables further exploration of additional flow features such as flow stagnation, separation, and reattachment points. Due to their inherent robustness and fault tolerant capability, distributed arrays of hair sensors are well equipped to assess the aerodynamic and flow states in adverse conditions. In this paper, a local flow measurement from an array of artificial hair sensors in a wind tunnel experiment is used with a feedforward artificial neural network to predict aerodynamic parameters such as lift coefficient, moment coefficient, free-stream velocity, and angle of attack on an airfoil. We find the prediction error within 6% and 10% for lift and moment coefficients. The error for free-stream velocity and angle of attack were within 0.12 mph and 0.37 degrees. Knowledge of these parameters are key to finding the real time forces and moments which paves the way for effective control design to increase flight agility, stability, and maneuverability.


Assuntos
Movimentos do Ar , Aviação , Materiais Biomiméticos , Voo Animal/fisiologia , Redes Neurais de Computação , Vibrissas/fisiologia , Animais , Calibragem , Modelos Biológicos , Vibrissas/anatomia & histologia
6.
Soft Matter ; 12(13): 3234-45, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26924339

RESUMO

Cyclic loading conditions are commonly encountered in the applications of shape memory polymers (SMPs), where the cyclic characteristics of the materials determine their performance during the service life, such as deformation resistance, shape recovery speed and shape recovery ratio. Recent studies indicate that in addition to the physical damage or some other irreversible softening effects, the viscoelastic nature could also be another possible reason for the degraded cyclic behavior of SMPs. In this paper, we explore in detail the influence of the viscoelastic properties on the cyclic tension and shape memory (SM) behavior of an epoxy based amorphous thermosetting polymer. Cyclic experiments were conducted first, which show that although the epoxy material does not have any visible damage or irreversible softening effect during deformation, it still exhibits obvious degradation in the cyclic tension and SM behaviors. A linear multi-branched model is utilized to assist in the prediction and understanding of the mechanical responses of amorphous SMPs. Parametric studies based on the applied model suggest that the shape memory performance can be improved by adjusting programming and recovery conditions, such as lowering the loading rate, increasing the programming temperature, and reducing the holding time.

7.
ACS Appl Mater Interfaces ; 7(50): 27624-31, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26618850

RESUMO

A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100-200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 µm lateral spatial resolution.

8.
ACS Appl Mater Interfaces ; 7(48): 26674-83, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26551435

RESUMO

The rapid heating of carbon-fiber-reinforced polymer matrix composites leads to complex thermophysical interactions which not only are dependent on the thermal properties of the constituents and microstructure but are also dependent on the thermal transport between the fiber and resin interfaces. Using atomistic molecular dynamics simulations, the thermal conductance across the interface between a carbon-fiber near-surface region and bismaleimide monomer matrix is calculated as a function of the interface and bulk features of the carbon fiber. The surface of the carbon fiber is modeled as sheets of graphitic carbon with (a) varying degrees of surface functionality, (b) varying defect concentrations in the surface-carbon model (pure graphitic vs partially graphitic), (c) varying orientation of graphitic carbon at the interface, (d) varying interface saturation (dangling vs saturated bonds), (e) varying degrees of surface roughness, and (f) incorporating high conductive fillers (carbon nanotubes) at the interface. After combining separately equilibrated matrix system and different surface-carbon models, thermal energy exchange is investigated in terms of interface thermal conductance across the carbon fiber and the matrix. It is observed that modifications in the studied parameters (a-f) often lead to significant modulation of thermal conductance across the interface and, thus, showcases the role of interface tailoring and surface-carbon morphology toward thermal energy exchange. More importantly, the results provide key bounds and a realistic degree of variation to the interface thermal conductance values at fiber/matrix interfaces as a function of different surface-carbon features.

9.
Adv Mater ; 26(20): 3230-4, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24665067

RESUMO

Artificial hair sensors consisting of a piezoresistive carbon-nanotube-coated glass fiber embedded in a microcapillary are assembled and characterized. Individual sensors resemble a hair plug that may be integrated in a wide range of host materials. The sensors demonstrate an air-flow detection threshold of less than 1 m/s with a piezoresistive sensitivity of 1.3% per m/s air-flow change.


Assuntos
Ar , Materiais Biomiméticos , Movimento (Física) , Nanotubos de Carbono , Desenho de Equipamento , Vidro , Modelos Teóricos
10.
Nanotechnology ; 24(47): 475707, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24192522

RESUMO

The deformation mechanism and mechanical properties of carbon nanotube (CNT) forests conformally coated with alumina using atomic layer deposition (ALD) are investigated using in situ and ex situ micro-indentation. While micro-indentation of a CNT forest coated with a thin discontinuous layer using 20 ALD cycles results in a deformation response similar to the response of uncoated CNT forests, a similar test on a CNT forest coated with a sufficiently thick and continuous layer using 100 ALD cycles causes fracture of both the alumina coatings and the core CNTs. With a 10 nm coating, 4-fold and 14-fold stiffness increases are measured using a flat punch and a Berkovich tip, respectively. Indentation testing with the Berkovich tip also reveals increased recoverability at relatively low strains. The results show that ALD coated CNT forests could be useful for applications that require higher stiffness or recoverability. Also, fracturing of the nanotubes shows that upper limits exist in the loading of conformally coated CNT forests.

11.
Langmuir ; 29(17): 5190-8, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23537107

RESUMO

Elastocapillary self-assembly is emerging as a versatile technique to manufacture three-dimensional (3D) microstructures and complex surface textures from arrangements of micro- and nanoscale filaments. Understanding the mechanics of capillary self-assembly is essential to engineering of properties such as shape-directed actuation, anisotropic wetting and adhesion, and mechanical energy transfer and dissipation. We study elastocapillary self-assembly (herein called "capillary forming") of carbon nanotube (CNT) microstructures, combining in situ optical imaging, micromechanical testing, and finite element modeling. By imaging, we identify sequential stages of liquid infiltration, evaporation, and solid shrinkage, whose kinetics relate to the size and shape of the CNT microstructure. We couple these observations with measurements of the orthotropic elastic moduli of CNT forests to understand how the dynamic of shrinkage of the vapor-liquid interface is coupled to the compression of the forest. We compare the kinetics of shrinkage to the rate of evporation from liquid droplets having the same size and geometry. Moreover, we show that the amount of shrinkage during evaporation is governed by the ability of the CNTs to slip against one another, which can be manipulated by the deposition of thin conformal coatings on the CNTs by atomic layer deposition (ALD). This insight is confirmed by finite element modeling of pairs of CNTs as corrugated beams in contact and highlights the coupled role of elasticity and friction in shrinkage and stability of nanoporous solids. Overall, this study shows that nanoscale porosity can be tailored via the filament density and adhesion at contact points, which is important to the development of lightweight multifunctional materials.


Assuntos
Nanoestruturas/química , Nanotubos de Carbono/química , Elasticidade , Cinética , Tamanho da Partícula , Propriedades de Superfície
12.
J Nanosci Nanotechnol ; 7(4-5): 1573-80, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17450928

RESUMO

One of the critical aspects of nanotechnology is to assemble different nanoscale components into a single system. In such a multicomponent system, the overall functionality depends strongly on the precise location and structural characteristics of each of the constituent components. In this context, we have prepared multicomponent micropatterns of silica particles interposed within the discrete areas of aligned multiwall carbon nanotubes. The patterns were fabricated by dry contact transferring aligned carbon nanotubes onto a tape pre-patterned with a thin layer of gold structure, followed by region-specific adsorption of thiol-modified silica particles onto the gold surface from solution. The dry contact transfer technique has further enabled us to develop micropatterns of aligned single-wall carbon nanotubes with interdispersed non-aligned multiwall carbon nanotubes and microsized carbon fibers sheathed with micropatterned aligned carbon nanotubes.


Assuntos
Nanotecnologia/instrumentação , Nanotecnologia/métodos , Nanotubos de Carbono/química , Adsorção , Carbono/química , Ouro , Teste de Materiais , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Modelos Químicos , Dióxido de Silício/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...