Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260476

RESUMO

SARS-CoV-2, the virus responsible for COVID-19, triggers symptoms such as sneezing, aches and pain.1 These symptoms are mediated by a subset of sensory neurons, known as nociceptors, that detect noxious stimuli, densely innervate the airway epithelium, and interact with airway resident epithelial and immune cells.2-6 However, the mechanisms by which viral infection activates these neurons to trigger pain and airway reflexes are unknown. Here, we show that the coronavirus papain-like protease (PLpro) directly activates airway-innervating trigeminal and vagal nociceptors in mice and human iPSC-derived nociceptors. PLpro elicits sneezing and acute pain in mice and triggers the release of neuropeptide calcitonin gene-related peptide (CGRP) from airway afferents. We find that PLpro-induced sneeze and pain requires the host TRPA1 ion channel that has been previously demonstrated to mediate pain, cough, and airway inflammation.7-9 Our findings are the first demonstration of a viral product that directly activates sensory neurons to trigger pain and airway reflexes and highlight a new role for PLpro and nociceptors in COVID-19.

2.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503246

RESUMO

A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis-regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. As a complement, we used sequence analyses to find population-genomic signatures of selection in M. m. castaneus, at the upstream regions of the translation genes, including at transcription factor binding sites. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Together, our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.

3.
FASEB J ; 35(10): e21899, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569661

RESUMO

The cornea of the eye differs from other mucosal surfaces in that it lacks a viable bacterial microbiome and by its unusually high density of sensory nerve endings. Here, we explored the role of corneal nerves in preventing bacterial adhesion. Pharmacological and genetic methods were used to inhibit the function of corneal sensory nerves or their associated transient receptor potential cation channels TRPA1 and TRPV1. Impacts on bacterial adhesion, resident immune cells, and epithelial integrity were examined using fluorescent labeling and quantitative confocal imaging. TRPA1/TRPV1 double gene-knockout mice were more susceptible to adhesion of environmental bacteria and to that of deliberately-inoculated Pseudomonas aeruginosa. Supporting the involvement of TRPA1/TRPV1-expressing corneal nerves, P. aeruginosa adhesion was also promoted by treatment with bupivacaine, or ablation of TRPA1/TRPV1-expressing nerves using RTX. Moreover, TRPA1/TRPV1-dependent defense was abolished by enucleation which severs corneal nerves. High-resolution imaging showed normal corneal ultrastructure and surface-labeling by wheat-germ agglutinin for TRPA1/TRPV1 knockout murine corneas, and intact barrier function by absence of fluorescein staining. P. aeruginosa adhering to corneas after perturbation of nerve or TRPA1/TRPV1 function failed to penetrate the surface. Single gene-knockout mice showed roles for both TRPA1 and TRPV1, with TRPA1-/- more susceptible to P. aeruginosa adhesion while TRPV1-/- corneas instead accumulated environmental bacteria. Corneal CD45+/CD11c+ cell responses to P. aeruginosa challenge, previously shown to counter bacterial adhesion, also depended on TRPA1/TRPV1 and sensory nerves. Together, these results demonstrate roles for corneal nerves and TRPA1/TRPV1 in corneal resistance to bacterial adhesion in vivo and suggest that the mechanisms involve resident immune cell populations.


Assuntos
Aderência Bacteriana , Córnea , Pseudomonas aeruginosa/metabolismo , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Córnea/inervação , Córnea/metabolismo , Córnea/microbiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/genética
4.
Neuron ; 109(19): 3075-3087.e2, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34411514

RESUMO

Itch is a discrete and irritating sensation tightly coupled to a drive to scratch. Acute scratching developed evolutionarily as an adaptive defense against skin irritants, pathogens, or parasites. In contrast, the itch-scratch cycle in chronic itch is harmful, inducing escalating itch and skin damage. Clinically and preclinically, scratching incidence is currently evaluated as a unidimensional motor parameter and believed to reflect itch severity. We propose that scratching, when appreciated as a complex, multidimensional motor behavior, will yield greater insight into the nature of itch and the organization of neural circuits driving repetitive motor patterns. We outline the limitations of standard measurements of scratching in rodent models and present new approaches to observe and quantify itch-evoked scratching. We argue that accurate quantitative measurements of scratching are critical for dissecting the molecular, cellular, and circuit mechanisms underlying itch and for preclinical development of therapeutic interventions for acute and chronic itch disorders.


Assuntos
Prurido/fisiopatologia , Animais , Modelos Animais de Doenças , Cães , Humanos , Camundongos , Prurido/terapia , Ratos
6.
Nat Struct Mol Biol ; 28(7): 573-582, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34158638

RESUMO

SARS-CoV-2 ORF3a is a putative viral ion channel implicated in autophagy inhibition, inflammasome activation and apoptosis. 3a protein and anti-3a antibodies are found in infected patient tissues and plasma. Deletion of 3a in SARS-CoV-1 reduces viral titer and morbidity in mice, suggesting it could be an effective target for vaccines or therapeutics. Here, we present structures of SARS-CoV-2 3a determined by cryo-EM to 2.1-Å resolution. 3a adopts a new fold with a polar cavity that opens to the cytosol and membrane through separate water- and lipid-filled openings. Hydrophilic grooves along outer helices could form ion-conduction paths. Using electrophysiology and fluorescent ion imaging of 3a-reconstituted liposomes, we observe Ca2+-permeable, nonselective cation channel activity, identify mutations that alter ion permeability and discover polycationic inhibitors of 3a activity. 3a-like proteins are found across coronavirus lineages that infect bats and humans, suggesting that 3a-targeted approaches could treat COVID-19 and other coronavirus diseases.


Assuntos
Microscopia Crioeletrônica , Nanoestruturas , SARS-CoV-2 , Proteínas Viroporinas/química , Proteínas Viroporinas/ultraestrutura , Animais , Cálcio/metabolismo , Quirópteros/virologia , Coronaviridae , Eletrofisiologia , Fluorescência , Humanos , Transporte de Íons , Lipossomos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fases de Leitura Aberta , Imagem Óptica , Reprodutibilidade dos Testes , SARS-CoV-2/química , SARS-CoV-2/ultraestrutura , Homologia de Sequência , Proteínas Virais/química , Proteínas Virais/ultraestrutura , Proteínas Viroporinas/antagonistas & inibidores
7.
Cell ; 184(2): 294-296, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33482094

RESUMO

Children and adults with atopic dermatitis suffer from intractable chronic itch and can also experience acute itch flare ups that significantly increase itch intensity. In this issue of Cell, Wang et al. demonstrate that a subset of basophils activates sensory neurons to drive allergen-evoked itch flare ups in atopic dermatitis.


Assuntos
Dermatite Atópica , Eczema , Alérgenos , Basófilos , Humanos , Prurido
8.
bioRxiv ; 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-32587976

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes the coronavirus disease 2019 (COVID-19). SARS-CoV-2 encodes three putative ion channels: E, 8a, and 3a1,2. 3a is expressed in SARS patient tissue and anti-3a antibodies are observed in patient plasma3-6. 3a has been implicated in viral release7, inhibition of autophagy8, inflammasome activation9, and cell death10,11 and its deletion reduces viral titer and morbidity in mice1, raising the possibility that 3a could be an effective vaccine or therapeutic target3,12. Here, we present the first cryo-EM structures of SARS-CoV-2 3a to 2.1 Å resolution and demonstrate 3a forms an ion channel in reconstituted liposomes. The structures in lipid nanodiscs reveal 3a dimers and tetramers adopt a novel fold with a large polar cavity that spans halfway across the membrane and is accessible to the cytosol and the surrounding bilayer through separate water- and lipid-filled openings. Electrophysiology and fluorescent ion imaging experiments show 3a forms Ca2+-permeable non-selective cation channels. We identify point mutations that alter ion permeability and discover polycationic inhibitors of 3a channel activity. We find 3a-like proteins in multiple Alphacoronavirus and Betacoronavirus lineages that infect bats and humans. These data show 3a forms a functional ion channel that may promote COVID-19 pathogenesis and suggest targeting 3a could broadly treat coronavirus diseases.

9.
Trends Neurosci ; 43(5): 311-325, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32353335

RESUMO

The peripheral somatosensory system bestows mammals with a diverse repertoire of sensory modalities: gentle touch, mechanical pain, itch, thermosensation, and proprioception. The cells and molecules that transduce many of these stimuli have already been characterized. But how somatosensory neurons transduce acutely painful mechanical forces is largely unknown and remains one of the 'final frontiers' of sensory neurobiology. In an effort to fill this gap in knowledge, recent studies have identified subpopulations of mechanical pain neurons and uncovered novel modulators of mechanical pain. These studies have greatly advanced our understanding of how noxious mechanical stimuli are detected in mammals. Here, we discuss recent progress in noxious mechanosensation and highlight new behavioral methods to assess mechanical pain.


Assuntos
Dor , Percepção do Tato , Animais , Neurônios
10.
Elife ; 82019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31631836

RESUMO

Chronic itch remains a highly prevalent disorder with limited treatment options. Most chronic itch diseases are thought to be driven by both the nervous and immune systems, but the fundamental molecular and cellular interactions that trigger the development of itch and the acute-to-chronic itch transition remain unknown. Here, we show that skin-infiltrating neutrophils are key initiators of itch in atopic dermatitis, the most prevalent chronic itch disorder. Neutrophil depletion significantly attenuated itch-evoked scratching in a mouse model of atopic dermatitis. Neutrophils were also required for several key hallmarks of chronic itch, including skin hyperinnervation, enhanced expression of itch signaling molecules, and upregulation of inflammatory cytokines, activity-induced genes, and markers of neuropathic itch. Finally, we demonstrate that neutrophils are required for induction of CXCL10, a ligand of the CXCR3 receptor that promotes itch via activation of sensory neurons, and we find that that CXCR3 antagonism attenuates chronic itch.


Assuntos
Dermatite Atópica/imunologia , Neutrófilos/imunologia , Prurido/imunologia , Receptores CXCR3/imunologia , Pele/imunologia , Animais , Calcitriol/administração & dosagem , Calcitriol/análogos & derivados , Linhagem Celular , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Prurido/induzido quimicamente , Prurido/genética , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo , Pele/inervação , Pele/metabolismo
11.
Nat Chem Biol ; 15(6): 623-631, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31036923

RESUMO

Sphingosine-1-phosphate (S1P) plays important roles as a signaling lipid in a variety of physiological and pathophysiological processes. S1P signals via a family of G-protein-coupled receptors (GPCRs) (S1P1-5) and intracellular targets. Here, we report on photoswitchable analogs of S1P and its precursor sphingosine, respectively termed PhotoS1P and PhotoSph. PhotoS1P enables optical control of S1P1-3, shown through electrophysiology and Ca2+ mobilization assays. We evaluated PhotoS1P in vivo, where it reversibly controlled S1P3-dependent pain hypersensitivity in mice. The hypersensitivity induced by PhotoS1P is comparable to that induced by S1P. PhotoS1P is uniquely suited for the study of S1P biology in cultured cells and in vivo because it exhibits prolonged metabolic stability compared to the rapidly metabolized S1P. Using lipid mass spectrometry analysis, we constructed a metabolic map of PhotoS1P and PhotoSph. The formation of these photoswitchable lipids was found to be light dependent, providing a novel approach to optically probe sphingolipid biology.


Assuntos
Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Lisofosfolipídeos/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Imagem Óptica , Processos Fotoquímicos , Esfingosina/química , Esfingosina/metabolismo
12.
Neuron ; 101(2): 193-195, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30653930

RESUMO

In this issue of Neuron, Royal et al. (2018) find that a mutant form of the TRESK ion channel linked to migraine undergoes alternative translation to produce an inhibitory protein that blocks TREK channels, leading to neuronal hyperexcitability and migraine in rodents.


Assuntos
Transtornos de Enxaqueca , Canais de Potássio/genética , Humanos , Mutação , Neurônios
13.
J Neurosci ; 38(36): 7833-7843, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30082422

RESUMO

Sphingosine 1-phosphate (S1P) is a bioactive signaling lipid associated with a variety of chronic pain and itch disorders. S1P signaling has been linked to cutaneous pain, but its role in itch has not yet been studied. Here, we find that S1P triggers itch and pain in male mice in a concentration-dependent manner, with low levels triggering acute itch alone and high levels triggering both pain and itch. Ca2+ imaging and electrophysiological experiments revealed that S1P signals via S1P receptor 3 (S1PR3) and TRPA1 in a subset of pruriceptors and via S1PR3 and TRPV1 in a subset of heat nociceptors. Consistent with these findings, S1P-evoked itch behaviors are selectively lost in mice lacking TRPA1, whereas S1P-evoked acute pain and heat hypersensitivity are selectively lost in mice lacking TRPV1. We conclude that S1P acts via different cellular and molecular mechanisms to trigger itch and pain. Our discovery elucidates the diverse roles that S1P signaling plays in somatosensation and provides insight into how itch and pain are discriminated in the periphery.SIGNIFICANCE STATEMENT Itch and pain are major health problems with few effective treatments. Here, we show that the proinflammatory lipid sphingosine 1-phosphate (S1P) and its receptor, S1P receptor 3 (S1PR3), trigger itch and pain behaviors via distinct molecular and cellular mechanisms. Our results provide a detailed understanding of the roles that S1P and S1PR3 play in somatosensation, highlighting their potential as targets for analgesics and antipruritics, and provide new insight into the mechanistic underpinnings of itch versus pain discrimination in the periphery.


Assuntos
Lisofosfolipídeos/metabolismo , Dor/metabolismo , Prurido/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/fisiologia , Esfingosina/análogos & derivados , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Camundongos , Camundongos Knockout , Dor/genética , Prurido/genética , Receptores de Lisoesfingolipídeo/genética , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Canais de Cátion TRPV/genética
14.
Elife ; 72018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561262

RESUMO

Somatosensory neurons mediate responses to diverse mechanical stimuli, from innocuous touch to noxious pain. While recent studies have identified distinct populations of A mechanonociceptors (AMs) that are required for mechanical pain, the molecular underpinnings of mechanonociception remain unknown. Here, we show that the bioactive lipid sphingosine 1-phosphate (S1P) and S1P Receptor 3 (S1PR3) are critical regulators of acute mechanonociception. Genetic or pharmacological ablation of S1PR3, or blockade of S1P production, significantly impaired the behavioral response to noxious mechanical stimuli, with no effect on responses to innocuous touch or thermal stimuli. These effects are mediated by fast-conducting A mechanonociceptors, which displayed a significant decrease in mechanosensitivity in S1PR3 mutant mice. We show that S1PR3 signaling tunes mechanonociceptor excitability via modulation of KCNQ2/3 channels. Our findings define a new role for S1PR3 in regulating neuronal excitability and establish the importance of S1P/S1PR3 signaling in the setting of mechanical pain thresholds.


Assuntos
Lisofosfolipídeos/fisiologia , Mecanorreceptores/fisiologia , Dor/fisiopatologia , Transdução de Sinais/fisiologia , Esfingosina/análogos & derivados , Animais , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ2/fisiologia , Canal de Potássio KCNQ3/metabolismo , Canal de Potássio KCNQ3/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Limiar da Dor , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/fisiologia , Receptores de Esfingosina-1-Fosfato
15.
Nature ; 555(7698): 591-592, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29595801
16.
Nature ; 555(7698): 591-592, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32094514
17.
Science ; 352(6285): 555-9, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26989199

RESUMO

Steroids regulate cell proliferation, tissue development, and cell signaling via two pathways: a nuclear receptor mechanism and genome-independent signaling. Sperm activation, egg maturation, and steroid-induced anesthesia are executed via the latter pathway, the key components of which remain unknown. Here, we present characterization of the human sperm progesterone receptor that is conveyed by the orphan enzyme α/ß hydrolase domain-containing protein 2 (ABHD2). We show that ABHD2 is highly expressed in spermatozoa, binds progesterone, and acts as a progesterone-dependent lipid hydrolase by depleting the endocannabinoid 2-arachidonoylglycerol (2AG) from plasma membrane. The 2AG inhibits the sperm calcium channel (CatSper), and its removal leads to calcium influx via CatSper and ensures sperm activation. This study reveals that progesterone-activated endocannabinoid depletion by ABHD2 is a general mechanism by which progesterone exerts its genome-independent action and primes sperm for fertilization.


Assuntos
Ácidos Araquidônicos/deficiência , Endocanabinoides/deficiência , Glicerídeos/deficiência , Hidrolases/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Adulto , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Fertilização , Humanos , Hidrolases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Progesterona/farmacologia , Ratos , Ratos Wistar , Receptores de Progesterona/genética , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Adulto Jovem
18.
Neuron ; 87(1): 124-38, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26074006

RESUMO

Chronic itch is a prevalent and debilitating condition for which few effective therapies are available. We harnessed the natural variation across genetically distinct mouse strains to identify transcripts co-regulated with itch behavior. This survey led to the discovery of the serotonin receptor HTR7 as a key mediator of serotonergic itch. Activation of HTR7 promoted opening of the ion channel TRPA1, which in turn triggered itch behaviors. In addition, acute itch triggered by serotonin or a selective serotonin reuptake inhibitor required both HTR7 and TRPA1. Aberrant serotonin signaling has long been linked to a variety of human chronic itch conditions, including atopic dermatitis. In a mouse model of atopic dermatitis, mice lacking HTR7 or TRPA1 displayed reduced scratching and skin lesion severity. These data highlight a role for HTR7 in acute and chronic itch and suggest that HTR7 antagonists may be useful for treating a variety of pathological itch conditions.


Assuntos
Dermatite Atópica/genética , Camundongos Endogâmicos C57BL/genética , Camundongos Endogâmicos DBA/genética , Prurido/genética , RNA Mensageiro/metabolismo , Receptores de Serotonina/genética , Canais de Potencial de Receptor Transitório/genética , Doença Aguda , Animais , Doença Crônica , Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL/metabolismo , Camundongos Endogâmicos DBA/metabolismo , Prurido/induzido quimicamente , Prurido/metabolismo , Receptores de Serotonina/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/metabolismo
19.
Curr Opin Neurobiol ; 34: 133-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26100741

RESUMO

An assortment of touch receptors innervate the skin and encode different tactile features of the environment. Compared with invertebrate touch and other sensory systems, our understanding of the molecular and cellular underpinnings of mammalian touch lags behind. Two recent breakthroughs have accelerated progress. First, an arsenal of cell-type-specific molecular markers allowed the functional and anatomical properties of sensory neurons to be matched, thereby unraveling a cellular code for touch. Such markers have also revealed key roles of non-neuronal cell types, such as Merkel cells and keratinocytes, in touch reception. Second, the discovery of Piezo genes as a new family of mechanically activated channels has fueled the discovery of molecular mechanisms that mediate and mechanotransduction in mammalian touch receptors.


Assuntos
Mamíferos/fisiologia , Mecanorreceptores/fisiologia , Mecanotransdução Celular/fisiologia , Tato/fisiologia , Animais , Humanos , Queratinócitos/fisiologia , Células de Merkel/fisiologia
20.
Handb Exp Pharmacol ; 226: 177-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25861780

RESUMO

Keratinocytes are epithelial cells that make up the stratified epidermis of the skin. Recent studies suggest that keratinocytes promote chronic itch. Changes in skin morphology that accompany a variety of chronic itch disorders and the multitude of inflammatory mediators secreted by keratinocytes that target both sensory neurons and immune cells highlight the importance of investigating the connection between keratinocytes and chronic itch. This chapter addresses some of the most recent data and models for the role keratinocytes play in the development and maintenance of chronic itch.


Assuntos
Comunicação Celular/fisiologia , Queratinócitos/fisiologia , Prurido/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Animais , Doença Crônica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...