Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37237783

RESUMO

Antibiotic resistance (AR) and multidrug resistance (MDR) have been confirmed for all major foodborne pathogens: Campylobacter spp., Salmonella spp., Escherichia coli and Listeria monocytogenes. Of great concern to scientists and physicians are also reports of antibiotic-resistant emerging food pathogens-microorganisms that have not previously been linked to food contamination or were considered epidemiologically insignificant. Since the properties of foodborne pathogens are not always sufficiently recognized, the consequences of the infections are often not easily predictable, and the control of their activity is difficult. The bacteria most commonly identified as emerging foodborne pathogens include Aliarcobacter spp., Aeromonas spp., Cronobacter spp., Vibrio spp., Clostridioides difficile, Escherichia coli, Mycobacterium paratuberculosis, Salmonella enterica, Streptocccus suis, Campylobacter jejuni, Helicobacter pylori, Listeria monocytogenes and Yersinia enterocolitica. The results of our analysis confirm antibiotic resistance and multidrug resistance among the mentioned species. Among the antibiotics whose effectiveness is steadily declining due to expanding resistance among bacteria isolated from food are ß-lactams, sulfonamides, tetracyclines and fluoroquinolones. Continuous and thorough monitoring of strains isolated from food is necessary to characterize the existing mechanisms of resistance. In our opinion, this review shows the scale of the problem of microbes related to health, which should not be underestimated.

2.
BMC Microbiol ; 23(1): 89, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997857

RESUMO

BACKGROUND: Enteroccocus spp. are human opportunistic pathogens causing a variety of serious and life-threating infections in humans, including urinary tract infection, endocarditis, skin infection and bacteraemia. Farm animals and direct contact with them are important sources of Enterococcus faecalis (EFA) and Enterococcus faecium (EFM) infections among farmers, veterinarians and individuals working in breeding farms and abattoirs. The spread of antibiotic-resistant strains is one of the most serious public health concerns, as clinicians will be left without therapeutic options for the management of enterococcal infections. The aim of the study was to evaluate the occurrence and antimicrobial susceptibility of EFA and EFM strains isolated from a pig farm environment and to determine the biofilm formation ability of identified Enterococcus spp. strains. RESULTS: A total numer of 160 enterococcal isolates were obtained from 475 samples collected in total (33.7%). Among them, 110 of genetically different strains were identified and classified into EFA (82; 74.5%) and EFM (28; 25.5%). Genetic similarity analysis revealed the presence of 7 and 1 clusters among the EFA and EFM strains, respectively. The highest percentage of EFA strains (16; 19.5%) was resistant to high concentrations of gentamicin. Among the EFM strains, the most frequent strains were resistant to ampicillin and high concentrations of gentamicin (5 each; 17.9%). Six (7.3%) EFA and 4 (14.3%) EFM strains showed vancomycin resistance (VRE - Vancomycin-Resistant Enterococcus). Linezolid resistance was found in 2 strains of each species. The multiplex PCR analysis was performed to identify the vancomycin resistant enterococci. vanB, vanA and vanD genotypes were detected in 4, 1 and 1 EFA strains, respectively. Four EFA VRE-strains in total, 2 with the vanA and 2 with the vanB genotypes, were identified. The biofilm analysis revealed that all vancomycin-resistant E. faecalis and E. faecium strains demonstrated a higher biofilm-forming capacity, as compared to the susceptible strains. The lowest cell count (5.31 log CFU / cm2) was reisolated from the biofilm produced by the vancomycin-sensitive strain EFM 2. The highest level of re-isolated cells was observed for VRE EFA 25 and VRE EFM 7 strains, for which the number was 7 log CFU / cm2 and 6.75 log CFU / cm2, respectively. CONCLUSIONS: The irrational use of antibiotics in agriculture and veterinary practice is considered to be one of the key reasons for the rapid spread of antibiotic resistance among microorganisms. Owing to the fact that piggery environment can be a reservoir of antimicrobial resistance and transmission route of antimicrobial resistance genes from commensal zoonotic bacteria to clinical strains, it is of a great importance to public health to monitor trends in this biological phenomenon.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Humanos , Animais , Suínos , Vancomicina , Fazendas , Polônia/epidemiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Enterococcus faecalis , Resistência a Vancomicina , Gentamicinas , Biofilmes , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/veterinária , Infecções por Bactérias Gram-Positivas/tratamento farmacológico
3.
Molecules ; 27(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807328

RESUMO

Compared to conventional agriculture, organic farming is believed to provide a higher nutritional and health value in its products due to the elimination of harmful contaminants (pesticides, nitrates, heavy metals, etc.). Numerous studies have been conducted to show how the production system affects the quality of food in terms of the content of bioactive compounds. The aim of this study was to compare the content of some bioactive compounds (vitamin C, ß-carotene, Ca content) and lactic acid bacteria (LAB) number and their bacteriocinogenic activity in organic and conventional fermented food. Although the results do not provide an unambiguous conclusion regarding the superiority of one production system over the other, the LAB number in organic pickled carrot juice, sauerkraut, yogurt, and kefir was higher than in their conventional counterparts. Their bacteriocinogenic potential against selected pathogens was also higher in most organic products. Organic vegetables contained significantly more vitamin C, and the calcium content in the organic yogurt was higher compared to the conventional version of the product. Relatively similar concentrations of ß-carotene for both production systems were found in carrot juice, while in organic pickled beet juice, there was five-fold less ß-carotene than in conventional juice.


Assuntos
Alimentos Fermentados , Lactobacillales , Antioxidantes , Ácido Ascórbico , Carotenoides , Agricultura Orgânica , Vitaminas
4.
Foods ; 11(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35627065

RESUMO

(1) Background: The main source of transmission of Listeria monocytogenes is contaminated food, e.g., fish and meat products and raw fruit and vegetables. The bacteria can remain for 13 years on machines in food processing plants, including fish plants. (2) Methods: A total of 720 swabs were collected from a salmon filleting line. The research material consisted of 62 (8.6%) L. monocytogenes isolates. Pulsed Field Gel Electrophoresis (PFGE) allowed detecting a pool of persistent strains. All persistent strains (n = 6) and a parallel group of strains collected sporadically (n = 6) were characterized by their ability to invade HT-29 cells, biofilm formation ability, and minimum bactericidal concentrations (MBC) of selected disinfectants. (3) Results: Among the obtained isolates, 38 genetically different strains were found, including 6 (15.8%) persistent strains. The serogroup 1/2a-3a represented 28 strains (73.7%), including the persistent ones. There were no significant differences in invasiveness between the persistent and sporadic strains. The persistent strains tolerated higher concentrations of the tested disinfectants, except for iodine-based compounds. The persistent strains initiated the biofilm formation process faster and formed it more intensively. (4) Conclusions: The presence of persistent strains in the food processing environment is a great challenge for producers to ensure consumer safety. This study attempts to elucidate the phenotypic characteristics of persistent L. monocytogenes strains.

5.
Ann Agric Environ Med ; 28(4): 595-604, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34969216

RESUMO

INTRODUCTION AND OBJECTIVE: The ability of L. monocytogenes to create biofilm results in the higher resistance to disinfectants and determines the need to search for effective methods of eradication. The aim of the study was to assess the level of L. monocytogenes contamination in the environment of a meat processing plant. The sensitivity of tested isolates to various antimicrobials used for disinfection purposes was also estimated. MATERIAL AND METHODS: The samples were taken from raw materials, semi-finished and final products, as well as food contact surfaces inthe production hall and deli meat packaging department. The number of L. monocytogenes and the effect of eight different biocides on bacteria planktonic forms and biofilm formed on stainless steel and polypropylene was investigated. The effect of blood and albumin on L. monocytogenes resistance to disinfectants was also analysed. RESULTS: The prevalence of L. monocytogenes on food contact surfaces was estimated at 2.93% (10 of 340 swabs taken). The samples of raw and processed products were not contaminated. Various disinfectants reduced the growth of planktonic L. monocytogenes forms at both tested concentrations 0.5% and 0.1% (irrespective of time exposure). The highest efficacy against L. monocytogenes biofilm was reported for agents containing hydrogen peroxide. The reduction of bacteria number ranged from 6.93-7.21 log CFU × cm-2, and was dependent on the surface type and time of agent application. CONCLUSIONS: In this study, the effectiveness of various disinfectants against planktonic bacteria and Listeria biofilm was observed. For the majority of disinfectants, the extension of time exposure increased bacteria elimination from the biofilm. The presence of blood resulted in reduction of the antilisterial action of most of the disinfectants applied at low concentrations.


Assuntos
Desinfetantes , Listeria monocytogenes , Biofilmes , Contagem de Colônia Microbiana , Desinfetantes/farmacologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Carne , Prevalência
6.
Microorganisms ; 9(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33808031

RESUMO

The skin is the largest organ of the human body and it protects the body from the external environment. It has become the topic of interest of researchers from various scientific fields. Microorganisms ensure the proper functioning of the skin. Of great importance, are the mutual relations between such microorganisms and their responses to environmental impacts, as dysbiosis may contribute to serious skin diseases. Molecular methods, used for microorganism identification, allow us to gain a better understanding of the skin microbiome. The presented article contains the latest reports on the skin microbiota in health and disease. The review discusses the relationship between a properly functioning microbiome and the body's immune system, as well as the impact of internal and external factors on the human skin microbiome.

7.
Front Microbiol ; 12: 811157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145498

RESUMO

Among the diseases that pose a serious threat to public health, those caused by viruses are of great importance. The Nipah virus (NiV) belonging to the Paramyxoviridae family was reported in Malaysia in 1998/1999. Due to its high mortality in humans, its zoonotic nature, the possibility of human-to-human transmission, and the lack of an available vaccine, the World Health Organization (WHO) has recognized it as a global health problem. Depending on strain specificity, neurological symptoms and severe respiratory disorders are observed in NiV infection. In most confirmed cases of NiV epidemics, the appearance of the virus in humans was associated with the presence of various animal species, but generally, bats of Pteropus species are considered the most important natural animal NiV reservoir and vector. Consumption of contaminated food, contact with animals, and "human-to-human" direct contact were identified as NiV transmission routes. Due to the lack of vaccines and drugs with proven effectiveness against NiV, treatment of patients is limited to supportive and prophylactic.

8.
Foods ; 9(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937989

RESUMO

Listeria monocytogenes are the etiological factor of listeriosis, and their main source for humans is food. The aim of the current study was to assess the contamination of various types of meat and the drug susceptibility of isolated L. monocytogenes. Between 2016-2018, 6000 swabs were taken (2000 annually) from the surface of pork, beef, and poultry. The analysis of intermediate and finished product samples was carried out in accordance with ISO 11290-1 (International Organization for Standardization). The genetic similarity assessment of the isolates obtained was based on the Pulsed Field Gel Electrophoresis (PFGE) method, and drug-sensitivity assessment using the disc-diffusion method. We found 2.1% of collected samples were L. monocytogenes positive. The level of meat contamination varied depending on its matrix. Most L. monocytogenes were isolated from poultry. It was shown that 39 (32.5%) strains were sensitive to all tested antibiotics and eight (6.7%) were resistant to all five tested antimicrobials. Most strains tested were resistant to cotrimoxazole (55; 45.8%) and meropenem (52; 43.3%), followed by erythromycin (48; 40.0%), penicillin (31; 25.8%), and ampicillin (21; 17.5%). High prevalence of this pathogen may be a serious problem, especially when linked with antibiotic resistance and high percentage of serotypes responsible for listeriosis outbreaks.

9.
Int J Food Microbiol ; 282: 71-83, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-29929178

RESUMO

The aim of this research was to investigate the occurrence of Listeria monocytogenes in fish and fish processing plant and to determine their transmission, virulence and antibiotic resistance. L. monocytogenes was isolated according to the ISO 11290-1. The identification of L. monocytogenes was confirmed by multiplex PCR method. Genetic similarity of L. monocytogenes strains was determined with the Pulsed-Filed Gene Electrophoresis (PFGE) method. The multiplex PCR was used for identification of L. monocytogenes serogroups and detection of selected virulence genes (actA, fbpA, hlyA, iap, inlA, inlB, mpl, plcA, plcB, prfA). The L. monocytogens isolates susceptibility to penicillin, ampicillin, meropenem, erythromycin, trimethoprim/sulfamethoxazole was evaluated with disc diffusion method according to EUCAST v. 7.1. The presence of 237 L. monocytogenes isolates (before genetic similarity assessment) in 614 examined samples was confirmed. After strain differentiation by PFGE techniques the presence of 161 genetically different strains were confirmed. The genetic similarity of the examined isolates suggested that the source of the L. monocytogenes strains were fishes originating from farms. All tested strains possessed all detected virulence genes. Among examined strains, the most (26, 38.6%) belonged to the group 1/2a-3a. The most of tested strains were resistant to erythromycin (47.1%) and trimethoprim/sulfamethoxazole (47.1%).


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Manipulação de Alimentos/instrumentação , Listeria monocytogenes/efeitos dos fármacos , Fatores de Virulência/genética , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Peixes , Microbiologia de Alimentos , Listeria monocytogenes/genética , Listeria monocytogenes/isolamento & purificação , Sorogrupo , Fatores de Virulência/metabolismo
10.
Ann Agric Environ Med ; 21(3): 485-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25292114

RESUMO

The occurrence of the pathogenic species C. perfringens and C. botulinum spores in animal by-products poses a potential epidemiological hazard. Strong entero- and neurotoxins produced by these bacteria adversely affect human health. To inactivate pathogens present in animal by-products, waste must be subjected to various methods of sanitization. The aim of the presented study was to estimate the effect of different doses of CaO on the viability of spores Clostridium sporogenes in meat wastes category 3. During the research, two doses of burnt lime were added to the poultry mince meat and meat mixed with swine blood contaminated with Clostridium sporogenes spore suspension. Half of the samples collected for microbiological analyses were buffered to achieve the pH level ~7, the other were examined without pH neutralization. To estimate the spore number, 10-fold dilution series in peptone water was prepared and heat-treated at 80 °C for 10 min. After cooling-down, one milliliter of each dilution was pour-plated onto DRCM medium solidified with agar. Statistical analysis were performed using the Statistica software. Application of 70% CaO caused complete inactivation of Clostridium spores in meat wastes after 48 hours. The highest temperature achieved during the experiment was 67 °C. Rapid alkalization of the biomass resulted in increasing pH to values exceeding 12. The effect of liming was not dependent on the meat wastes composition nor CaO dose. The experiment proved the efficiency of liming as a method of animal by-products sanitization. Application of the obtained results may help reduce the epidemiological risk and ensure safety to people handling meat wastes at each stage of their processing and utilization.


Assuntos
Compostos de Cálcio/farmacologia , Infecções por Clostridium/veterinária , Clostridium/efeitos dos fármacos , Desinfetantes/farmacologia , Contaminação de Alimentos/prevenção & controle , Carne/microbiologia , Óxidos/farmacologia , Doenças dos Suínos/prevenção & controle , Animais , Infecções por Clostridium/microbiologia , Infecções por Clostridium/prevenção & controle , Relação Dose-Resposta a Droga , Manipulação de Alimentos , Microbiologia de Alimentos , Esporos Bacterianos/efeitos dos fármacos , Suínos , Doenças dos Suínos/microbiologia
11.
ScientificWorldJournal ; 2014: 928094, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24578670

RESUMO

Fish meals, added to feeds as a source of protein, may contain pathogenic bacteria. Therefore, effective methods for their sanitizing, such as UV-C radiation, are needed to minimize the epidemiological risk. The objective of this study was to evaluate the effect of UV-C radiation on the sanitary state of fish meals. The research materials included salmon and cod meals. Samples of the fish meals were inoculated with suspensions of Salmonella, E. coli, enterococci, and C. sporogenes spores and exposed to the following surface UV-C fluencies: 0-400 J·m⁻² for bacteria and 0-5000 J·m⁻² for spores. For the vegetative forms, the highest theoretical lethal UV-C dose, ranging from 670.99 to 688.36 J·m⁻² depending on the meal type, was determined for Salmonella. The lowest UV-C fluency of 363.34-363.95 J·m⁻² was needed for the inactivation of Enterococcus spp. Spores were considerably more resistant, and the UV-C doses necessary for inactivation were 159571.1 J·m⁻² in salmon meal and 66836.9 J·m⁻² in cod meal. The application of UV-C radiation for the sanitization of fish meals proved to be a relatively effective method for vegetative forms of bacteria but was practically ineffective for spores.


Assuntos
Bactérias/efeitos da radiação , Desinfecção/métodos , Produtos Pesqueiros/microbiologia , Gadus morhua , Salmão , Raios Ultravioleta , Animais , Relação Dose-Resposta à Radiação , Produtos Pesqueiros/análise , Especificidade da Espécie , Esporos Bacterianos/efeitos da radiação
12.
Ann Agric Environ Med ; 20(2): 252-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23772570

RESUMO

Slurry, due to high microbiological contamination, requires hygienization before spreading. The agricultural usage of treated slurry has to guarantee biosafety. Therefore, constant monitoring of the slurry treatment process should be conducted. The use of Filter-Sandwich carriers seems to be a prospective solution. The aim of the research was to test whether Filter-Sandwich carriers influence the survivability of microorganisms during the slurry hygienization process and hence, whether they are safe for the environment. Raw cattle and swine slurry with different dry matter content was the research material. Salmonella Senftenberg W775 rods were introduced directly into the slurry and into the carriers placed in the liquid excrements stored at 4 and 20ºC, and underwent anaerobic digestion at 35ºC. The number of tested bacteria obtained from the slurry and carriers was determined using the MPN method with proper microbiological media. The values of physicochemical parameters of the raw and treated slurry were determined, both for the carriers and for slurry only. Biosafety control was also conducted for the carriers in slurry containers. The differences in the theoretical survivability between Salmonella Senftenberg W775 re-isolated from the slurry and the carriers, and in the values of the selected physicochemical parameters obtained at the end of the process, were not statistically significant. The re-contamination of the sterile slurry caused by the bacteria in the carrier was not observed after placement of the carrier with inoculated material. The conducted research proves the usefulness of Filter-Sandwich carriers for continuous hygienization monitoring of the slurry treatment process. This refers not only to the semi-technical scale, but also to the full-scale process.


Assuntos
Monitoramento Ambiental/métodos , Viabilidade Microbiana , Salmonella/fisiologia , Eliminação de Resíduos Líquidos/métodos , Animais , Bovinos , Filtração , Salmonella/isolamento & purificação , Esgotos/microbiologia , Suínos
13.
Ann Agric Environ Med ; 19(3): 427-30, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23020034

RESUMO

The aim of this study was to estimate the usefulness of mesophilic anaerobic digestion and aeration for sanitization of slurry from the aspect of limiting transmission of Salmonella into the environment. Material for the study was fresh pig slurry. Collected samples were subjected to anaerobic digestion at 35°C and aeration with an initial temperature of 35°C. The efficacy of both methods was examined based on determination of the elimination rate and theoretical time of survival of Salmonella Senftenberg W(775), Salmonella Enteritidis and Salmonella Typhimurium introduced into slurry in carriers of type Filter-Sandwich. Samples for the study were collected every 24 hours and the number of bacilli was determined with the MPN (Most Probably Number) method. The study indicated that fermentation is a more effective method for slurry sanitization. A higher rate of elimination and shorter time of survival of all the tested bacteria was observed, compared with the use of aeration. The experiment allowed us to prove the high sanitization efficacy of both examined methods. They ensure the full elimination of the tested serotypes of Salmonella in only slightly more than 10 days. The use of fermentation or aeration as a way of slurry treatment for agricultural purposes makes it possible to obtain a fertilizer which is valuable and safe for humans and the environment.


Assuntos
Salmonella/crescimento & desenvolvimento , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Movimentos do Ar , Anaerobiose , Animais , Reatores Biológicos , Fermentação , Temperatura Alta , Polônia , Especificidade da Espécie , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...