Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(4 Pt 1): 041306, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16383372

RESUMO

In recent years, experience has demonstrated that the classical fractal dimensions are not sufficient to describe uniquely the interstitial geometry of porous media. At least one additional index or dimension is necessary. Lacunarity, a measure of the degree to which a data set is translationally invariant, is a possible candidate. Unfortunately, several approaches exist to evaluate it on the basis of binary images of the object under study, and it is unclear to what extent the lacunarity estimates that these methods produce are dependent on the resolution of the images used. In the present work, the gliding-box algorithm of Allain and Cloitre [Phys. Rev. A 44, 3552 (1991)] and two variants of the sandbox algorithm of Chappard et al. [J. Pathol. 195, 515 (2001)], along with three additional algorithms, are used to evaluate the lacunarity of images of a textbook fractal, the Sierpinski carpet, of scanning electron micrographs of a thin section of a European soil, and of light transmission photographs of a Togolese soil. The results suggest that lacunarity estimates, as well as the ranking of the three tested systems according to their lacunarity, are affected strongly by the algorithm used, by the resolution of the images to which these algorithms are applied, and, at least for three of the algorithms (producing scale-dependent lacunarity estimates), by the scale at which the images are observed. Depending on the conditions under which the estimation of the lacunarity is carried out, lacunarity values range from 1.02 to 2.14 for the three systems tested, and all three of the systems used can be viewed alternatively as the most or the least "lacunar." Some of this indeterminacy and dependence on image resolution is alleviated in the averaged lacunarity estimates yielded by Chappard et al.'s algorithm. Further research will be needed to determine if these lacunarity estimates allow an improved, unique characterization of porous media.

2.
Int J Toxicol ; 22(2): 109-28, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12745992

RESUMO

A critical review finds government agencies allow, permit, license, or ignore arsenic releases to surface soils. Release rates are controlled or evaluated using risk-based soil contaminant numerical limits employing standardized risk algorithms, chemical-specific and default input values. United States arsenic residential soil limits, approximately 0.4- approximately 40 ppm, generally correspond to a one-in-one-million to a one-in-ten-thousand incremental cancer risk range via ingestion of or direct contact with contaminated residential soils. Background arsenic surface soil levels often exceed applicable limits. Arsenic releases to surface soils (via, e.g., air emissions, waste recycling, soil amendments, direct pesticide application, and chromated copper arsenic (CCA)-treated wood) can result in greatly elevated arsenic levels, sometimes one to two orders of magnitude greater than applicable numerical limits. CCA-treated wood, a heavily used infrastructure material at residences and public spaces, can release sufficient arsenic to result in surface soil concentrations that exceed numerical limits by one or two orders of magnitude. Although significant exceedence of arsenic surface soil numerical limits would normally result in regulatory actions at industrial or hazardous waste sites, no such pattern is seen at residential and public spaces. Given the current risk assessment paradigm, measured or expected elevated surface soil arsenic levels at residential and public spaces suggest that a regulatory health crisis of sizeable magnitude is imminent. In contrast, available literature and a survey of government agencies conducted for this paper finds no verified cases of human morbidity or mortality resulting from exposure to elevated levels of arsenic in surface soils. This concomitance of an emerging regulatory health crisis in the absence of a medical crisis is arguably partly attributable to inadequate government and private party attention to the issue.


Assuntos
Intoxicação por Arsênico , Arsênio/análise , Poluição Ambiental , Órgãos Governamentais , Poluentes do Solo/análise , Madeira , Animais , Arseniatos/análise , Arsênio/farmacocinética , Materiais de Construção/análise , Humanos , Medição de Risco , Estados Unidos
3.
Environ Sci Technol ; 35(22): 4449-56, 2001 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-11757600

RESUMO

A recent article presented geochemical and microbial evidence establishing metabolic adaptation to and in-situ reductive dechlorination of trichloroethene (TCE) in a fractured dolomite aquifer. This study was designed to further explore site conditions and microbial populations and to explain previously reported enhancement of reductive dechlorination by the addition of pulverized dolomite to laboratory microcosms. A survey of groundwater geochemical parameters (chlorinated ethenes, ethene, H2, CH4, DIC, DOC, and delta13C values for CH4, DIC, and DOC) indicated that in situ reductive dechlorination was ongoing and that an unidentified pool of organic carbon was contributing, likely via microbial respiration, to the large and relatively light on-site DIC pool. Petroleum hydrocarbons associated with the dolomite rock were analyzed by GC/MS and featured a characteristically low delta13C value. Straight chain hydrocarbons were extracted from the dolomite previously found to stimulate reductive dechlorination; these were particularly depleted in hexadecane (HD). Thus, we hypothesized that HD and related hydrocarbons might be anaerobically respired and serve both as the source of on-site DIC and support reductive dechlorination of TCE. Microcosms amended with pulverized dolomite demonstrated reductive dechlorination, whereas a combusted dolomite amendment did not. HD-amended microcosms were also inactive. Therefore, the stimulatory factor in the pulverized dolomite was heat labile, but that component was not HD. Amplified Ribosomal DNA Restriction Analysis (ARDRA) of the microbial populations in well waters indicated that a relatively low diversity, sulfur-transforming community outside the plume was shifted toward a high diversity community including Dehalococcoides ethenogenes-type microorganisms inside the zone of contamination. These observations illustrate biogeochemical intricacies of in situ reductive dechlorination reactions.


Assuntos
Carbonato de Cálcio/química , Magnésio/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solventes/metabolismo , Tricloroetileno/metabolismo , Poluentes da Água/metabolismo , Bactérias Anaeróbias/fisiologia , Cloro/química , Cloro/metabolismo , Hidrocarbonetos/metabolismo , Oxirredução , Dinâmica Populacional , Poluentes do Solo/análise , Solventes/análise , Tricloroetileno/análise , Poluentes da Água/análise , Abastecimento de Água
4.
Nature ; 404(6776): 329, 2000 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-10746696
5.
Acad Med ; 75(3): 217-8; author reply 218-9, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10724306
6.
Sci Total Environ ; 227(1): 13-28, 1999 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-10209879

RESUMO

Soil samples were collected at 15-cm increments to a depth of 75 cm from plots on a silt loam soil where until several years earlier and for 14 years, anaerobically digested sewage sludge had been annually applied by furrow irrigation. The study protocol consisted of four replications of 6.1 x 12.2-m plots with 0 (T0), 1/4-maximum (T1), 1/2-maximum (T2) and maximum (T3) sludge application rates randomized within blocks. When sludge applications were terminated, maximum sludge-treated plots had received 765 Mg ha-1 (dry weight equivalent) of sludge solids. Total soil concentrations of Cd, Cr, Cu, Ni, Pb and Zn had been significantly enhanced by all sludge application rates to a soil depth of 30 cm. Below the 30-cm depth, total soil Cd was increased to 75 cm, total Zn to 45 cm (T2 and T3 only), total Cr to 60 cm (T2 and T3 only), but total Cu, Pb, and Ni were not increased at depth. Despite the lack of significant increases in subsoil concentrations for some metals, mass balance calculations showed a relatively high proportion of all the above sludge-borne heavy metals to be unaccounted for in the soil profile for each application rate. Mass balance calculations of losses ranged from a high of 60% for Ni to a low of 36% for Cu and Pb. Similar losses were calculated from metal concentrations measured in soil samples taken at the time the sludge was applied. In soil surface samples (0-15 cm) from maximum sludge-treated plots, percentages of total metal concentration extracted with 4.0 M HNO3 ranged from a low of 31 for Zn to a high of 75 for Cu. Efficiency of metal extraction by HNO3 was inconsistent, depending on the soil horizon and sludge treatment, so that evaluation of HNO3-extractable metals is not a reliable method of estimating total metal retention in the profiles. In soil surface samples from maximum sludge-treated plots, the percentage of total metal contents extracted with DTPA ranged from a low of 0.03 for Cr to a high of 59 for Cd. The DTPA extractable levels of Cu, Ni, and Pb were higher in the subsoils of the sludge-treated soils, indicating that these metals had been redistributed from the surface layer to deeper zones in the profile of sludge-amended soil, despite the absence of elevated total concentrations of these three metals in the deeper subsoil.


Assuntos
Esgotos/análise , Poluentes do Solo/análise , Oligoelementos/análise , Metais Pesados/análise , Ácido Pentético , Fatores de Tempo
7.
Arch Environ Contam Toxicol ; 36(2): 124-31, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9888956

RESUMO

Most soil quality guidelines do not distinguish among the various forms of metals in soils; insoluble, nonreactive, and nonbioavailable forms are deemed as hazardous as highly soluble, reactive, and toxic forms. The objective of this study was to better understand the long-term effects of copper on microorganisms in relation to its chemical speciation in the soil environment. Carbon mineralization processes and the global structure of different microbial communities (fungi, eubacteria, actinomycetes) are still affected after more than 50 years of copper contamination in 20 soils sampled from two different agricultural sites. The microbial respiration lag period (LP) preceding the beginning of mineralization process increases with the level of soil copper contamination and is not significantly affected by other environmental factors such as soil pH and soil organic matter (SOM) content. The total copper concentration showed the best correlation with the LP when each site is considered separately. However, when considering the whole set of data, soil solution free Cu2+ activity (pCu2+) is the best predictor of Cu toxicity determined by LP (quite likely because pCu2+ integrates the soil physicochemical variability). The maximum mineralization rate (MMR), even if well correlated with the pCu2+, appears not to be a good biomonitor of copper contamination in soils since it is highly sensitive to soil characteristics such as SOM content. This study emphasizes the importance of the physicochemical properties of the environment on soil heavy metal toxicity and on soil toxicological measurements. These properties must be characterized in soil toxicological studies with respect to (1) their interactions with heavy metals, and (2) their direct impact on the selected biological test. The measurement of pCu2+ to characterize the level of soil contamination and of lag period as a bioindicator of metal effects in the soil are recognized as useful tools for the evaluation of the biological quality of soils.


Assuntos
Cobre/química , Cobre/toxicidade , Poluentes Ambientais/toxicidade , Microbiologia do Solo
8.
Environ Sci Technol ; 33(3): 55A, 1999 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21662447
9.
Appl Environ Microbiol ; 62(12): 4580-6, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16535470

RESUMO

Flow cytometry was used to enumerate and characterize bacteria from a sand column microcosm simulating aquifer conditions. Pure cultures of a species of Bacillus isolated from subsurface sediments or Bacillus megaterium were first evaluated to identify these organisms' characteristic histograms. Counting was then carried out with samples from the aquifer microcosms. Enumeration by flow cytometry was compared with more-traditional acridine orange direct counting. These two techniques gave statistically similar results. However, counting by flow cytometry, in this case, surveyed a sample size 700 times greater than did acridine orange direct counting (25 (mu)l versus 0.034 (mu)l) and required 1/10 the time (2 h versus 20 h). Flow cytometry was able to distinguish the same species of bacteria grown under different nutrient conditions, and it could distinguish changes in cell growth patterns, specifically single cell growth versus chained cell growth in different regions of an aquifer microcosm. A biomass estimate was calculated by calibrating the total fluorescence of a sample from a pure culture with the dry weight of a freeze-dried volume from the original pure culture. Growth conditions significantly affected histograms and biomass estimates, so the calibration was carried out with cells grown under conditions similar to those in the aquifer microcosm. Costs associated with using flow cytometry were minimal compared with the amount of time saved in counting cells and estimating biomass.

10.
Biodegradation ; 7(4): 297-302, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8987888

RESUMO

The degradation by a consortium of slightly-halophile marine bacteria of styrene initially dissolved in silicone oil was monitored in batch reactors stirred at 75, 125 and 500 rpm, respectively. In the 75 and 125 rpm cases, the styrene biodegradation rate was higher than the rate of spontaneous partitioning of styrene from the oil to the water, determined under abiotic conditions. Abiotic transfer tests carried out after biodegradation runs revealed that bacterial activity had resulted in a significant increase in the rate of styrene partitioning between the two liquid phases. Even though bacterial adsorption was noticeable at the oil-water interface, this effect appeared to be due to the release by the bacteria of chemicals in the aqueous phase. Similarity with observations made with Triton X-100 suggested that the chemicals released may have been biosurfactants or solubilizing agents.


Assuntos
Bactérias/metabolismo , Estirenos/química , Estirenos/metabolismo , Microbiologia da Água , Xenobióticos/química , Xenobióticos/metabolismo , Biodegradação Ambiental , Fenômenos Químicos , Físico-Química , Cinética , Água do Mar , Óleos de Silicone/química
11.
World J Microbiol Biotechnol ; 10(3): 325-33, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-24421021

RESUMO

The extent to which a methanogen can clog sand columns was examined: two permeameters packed with clean quartz sand were sterilized, saturated with water, inoculated with Methanosarcina barkeri and percolated under upward flow conditions. After approx. 5 months, the hydraulic conductivity of the sand had decreased to 3% and 25% of the highest values measured earlier. At that point, gas-filled regions in the sand were clearly visible through the transparent walls of the permeameters, and methane bubbles were continuously released from the columns into the effluent. Scanning electron microscopy observations and biomass assays indicated that cell mass accumulation did not contribute significantly to the observed decrease of the hydraulic conductivity. This decrease was therefore attributed to pore blocking due to the entrapment of methane bubbles.

12.
Appl Environ Microbiol ; 58(8): 2523-30, 1992 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16348753

RESUMO

In an earlier article, we reported that, under conditions in which neither exopolymers nor bacterial mats were produced, Arthrobacter sp. strain AK19 was an effective plugging agent in sand columns, whereas the bacterial strain SLI had no significant effect on the permeability of the medium. A laboratory experiment with sand columns was carried out to elucidate the causes of this difference in behavior. Measured values of the saturated hydraulic conductivity of the sand were explained in terms of biomass accumulation, which was estimated by solving a mass balance equation. The relationship between the saturated hydraulic conductivity and the biomass density within the sand was exponential, although two different exponential coefficients were needed to fit the data for biomass densities above or below 13 mg (wet weight) per cm, suggesting that two different clogging mechanisms may be involved in different ranges of biomass densities. The experimental results suggest that the SLI strain was a poor clogging agent partly because of its lower yield coefficient relative to the limiting nutrient (oxygen) and partly because 60% of the biomass produced in situ was washed out from the column, compared with only 1.2% in the case of Arthrobacter sp. strain AK19.

13.
Appl Environ Microbiol ; 58(5): 1690-8, 1992 May.
Artigo em Inglês | MEDLINE | ID: mdl-1622240

RESUMO

Columns were packed with clean quartz sand, sterilized, and inoculated with different strains of bacteria, which multiplied within the sand at the expense of a continuous supply of fresh nutrient medium. The saturated hydraulic conductivity (HCsat) of the sand was monitored over time. Among the four bacterial strains tested, one formed a capsule, one produced slime layers, and two did not produce any detectable exopolymers. The last two strains were nonmucoid variants of the first two. Only one strain, the slime producer, had a large impact on the HCsat. The production of exopolymers had no effect on either cell multiplication within or movement through the sand columns. Therefore, the HCsat reduction observed with the slime producer was tentatively attributed to the obstruction of flow channels with slime. Compared with the results with Arthrobacter sp. strain AK19 used in a previous study, there was a 100-fold increase in detachment from the solid substratum and movement through the sand of the strains used in this study. All strains induced severe clogging when they colonized the inlet chamber of the columns. Under these conditions, the inlet end was covered by a confluent mat with an extremely low HCsat.


Assuntos
Bactérias/metabolismo , Biopolímeros , Microbiologia do Solo , Bactérias/ultraestrutura , Ecologia , Filtração/instrumentação , Filtração/métodos , Glucose/metabolismo
14.
Appl Environ Microbiol ; 57(9): 2497-501, 1991 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-1662934

RESUMO

Determinations were made of the influence of NaCl concentration, cell density, and flow velocity on the transport of Pseudomonas sp. strain KL2 through columns of aquifer sand under saturated conditions. A pulse-type boundary condition was used. The experiments were conducted by using 0.3-m-long Plexiglas columns with an internal diameter of 0.05 m. When a 1-h pulse of a 0.01 M NaCl solution containing 10(8) cells per ml was added at a flow rate of 10(-4) m s-1, the bacterial density in the effluent never exceeded 2.2% of the density of cells added, and only 1.5% of the bacteria passed through the aquifer material. In contrast, when the bacteria were applied in distilled water, the relative cell density in the effluent approached 100%, and 60% of the bacteria were transported through the aquifer solids. Under these conditions, the breakthrough of Pseudomonas sp. strain KL2 was slower than chloride. When the flow rate was 2.0 x 10(-4) m s-1, the cell density in the effluent reached 7.3% of that added in 0.01 M NaCl solution, but only 3.9% of the bacteria were transported through the aquifer particles. On the other hand, the density in the effluent approached 100% of that added in deionized water, and 77% of the added bacteria were recovered. When the density of added cells was 10(9) cells per ml at a flow rate of 10(-4) m s-1, the densities in the effluent reached 70 and 100% of those added in salt solution and deionized water, respectively, and 44 and 57% of the bacteria were transported through the aquifer solids.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Pseudomonas/fisiologia , Dióxido de Silício , Cloreto de Sódio/farmacologia , Microbiologia do Solo , Movimento Celular/efeitos dos fármacos , Meios de Cultura , Pseudomonas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...