Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399225

RESUMO

The encapsulation of drugs within mesoporous silica (MS) has for several years been a subject of research. Previous studies proposed that drug loadings up to the monomolecular loading capacity (MLC) are the optimal choice for maintaining the drug in an amorphous form, whereas filling the pores above the monolayer and up to the pore filling capacity (PFC) may introduce some physical instabilities. The aim of this study was to assess the effect of drug loading in MS-based amorphous formulations on the stability of the amorphous form of the drug as well as the dissolution. In particular, the following drug loadings were investigated: below MLC, at MLC, between MLC and PFC and at PFC. The drug-loaded MS formulations were analyzed directly after preparation and after 18 months of storage under accelerated conditions (40 °C in both dry and humid conditions). The MLC and PFC for the drug celecoxib (CEL) on the MS ParteckSLC500 (SLC) were determined at 33.5 wt.% and 48.4 wt.%, respectively. This study found that SLC can effectively preserve the amorphous form of the drug for 18 months, provided that the loading is below the PFC (<48.4 wt.%) and no humidity is present. On the other hand, drug loading at the PFC showed recrystallization even when stored under dry conditions. Under humid conditions, however, all samples, regardless of drug loading, showed recrystallization upon storage. In terms of dissolution, all freshly prepared formulations showed supersaturation. For drug loadings below PFC, a degree of supersaturation (DS) around 15 was measured before precipitation was observed. For drug loadings at PFC, the DS was found to be lower and only 6-times compared to the crystalline solubility. Lastly, for those samples that remained amorphous during storage for 18 months, the release profiles were found to be the same as the freshly loaded samples, with similar Cmax, Tmax and dissolution rate.

2.
Eur J Pharm Biopharm ; 152: 35-43, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32376371

RESUMO

Simple solvent shift is often used to induce supersaturation and investigate precipitation kinetics in early drug development as a substitute for amorphous dissolution. This study develops and compares a small-scale non-sink amorphous dissolution method to a solvent shift method as induction methods for supersaturation of the model drugs albendazole, felodipine and tadalafil with respect to the maximum dissolved drug concentration, and the solid form of the precipitate. The study also investigates the effect of pre-dispersed precipitation inhibitors (hydroxypropyl methyl cellulose (HPMC) or polyvinylpyrrolidone (PVP)) on tadalafil supersaturation induced by both amorphous dissolution and solvent shift with respect to maximum dissolved drug concentration, precipitation rate and solid form of the precipitate. The maximum drug concentrations achieved through solvent shift were 15.9, 208 and 108 µg/mL for albendazole, felodipine and tadalafil, respectively. Pre-dispersing 0.1% (w/v) HPMC or PVP, increased the maximum concentration by solvent shift of tadalafil to 180 µg/mL, for both polymers. Dissolution of up to 90 mg albendazole, 120 mg felodipine and 8.9 mg tadalafil could yield a maximum dissolved drug concentration of 76.1%, 87.9% and 102.5%, respectively, of the corresponding solvent shift maximum concentration. The maximum concentration achieved through amorphous dissolution of tadalafil with HPMC or PVP present in the dissolution medium was 87.1% and 88.7%, respectively of the solvent shift maximum concentration. Dissolution of 2 mg amorphous tadalafil with and without pre-dispersed polymer gave the same rank order of onset of precipitation as for the solvent shift method. The solid form of precipitate was the same for albendazole, felodipine, tadalafil and tadalafil with PVP for both methods. For tadalafil with HPMC, the precipitate was amorphous following solvent shift, but crystalline after amorphous dissolution. Overall, this study shows that the maximum concentration achievable through amorphous dissolution can be estimated when performing solvent shift and the precipitation inhibition of excipients assessed via solvent shift can be used to predict the effect on precipitation using amorphous dissolution.


Assuntos
Preparações Farmacêuticas/química , Solventes/química , Tecnologia Farmacêutica/métodos , Excipientes/química , Derivados da Hipromelose/química , Polímeros/química , Povidona/química , Solubilidade
3.
Int J Pharm X ; 1: 100008, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31517273

RESUMO

In this study, the influence of the mesoporous silica (MS) textural properties (surface area, pore diameter, and pore volume) on drug loading capacity (monomolecular loading capacity and pore filling capacity) was investigated theoretically and experimentally using a thermoanalytical method. The loading capacities of three model drugs (celecoxib, cinnarizine, and paracetamol) were determined in five different MS grades of Sylysia® with identical chemical composition, but varying surface area, pore diameter and pore volume. The experimentally determined loading capacities were compared to theoretical loading capacities, calculated based on the surface area and amorphous density of the drugs, and the surface area and pore volume of the MS. The findings of the study showed that the monomolecular loading capacity generally increased with increasing surface area and decreasing pore volume of the MS. However, the MS grade with the highest surface area did not display the highest monomolecular loading capacity for any of the three drugs. This was probably a result of the decreasing pore diameter necessary to accommodate the increasing surface area of the MS i.e., if the pore is smaller than the drug molecule, the drug cannot access the available surface area. For these systems, the amorphous density of the drug and the pore volume of the MS was used to estimate the theoretical pore filling capacity, which was in good agreement with the experimentally determined loading capacity. In conclusion, this study showed that both the pore volume and surface area of the MS will have an influence on the drug loading capacity and that this can be estimated with good accuracy both theoretically and experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...