Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BMC Microbiol ; 23(1): 273, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773096

RESUMO

There has been considerable research into the understanding of the healthy skin microbiome. Similarly, there is also a considerable body of research into whether specific microbes contribute to skin disorders, with atopic dermatitis (AD) routinely linked to increased Staphylococcus aureus (S. aureus) colonisation. In this study, the epidermal surface of participants was sampled using swabs, while serial tape-stripping (35 tapes) was performed to sample through the stratum corneum. Samples were taken from AD patients and healthy controls, and the bacterial communities were profiled by metabarcoding the universal V3-V4 16S rRNA region. Results show that the majority of bacterial richness is located within the outermost layers of the stratum corneum, however there were many taxa that were found almost exclusively at the very outermost layer of the epidermis. We therefore hypothesise that tape-stripping can be performed to investigate the 'core microbiome' of participants by removing environmental contaminants. Interestingly, significant community variation between AD patients and healthy controls was only observable at the epidermal surface, yet a number of individual taxa were found to consistently differ with AD status across the entire epidermis (i.e. both the epidermal surface and within the epidermis). Sampling strategy could therefore be tailored dependent on the hypothesis, with sampling for forensic applications best performed using surface swabs and outer tapes, while profiling sub-surface communities may better reflect host genome and immunological status.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/microbiologia , Staphylococcus aureus/genética , RNA Ribossômico 16S/genética , Epiderme/microbiologia , Pele/microbiologia
3.
APMIS ; 131(8): 403-409, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37267058

RESUMO

Chronic wounds are defined as wounds that fail to proceed through the normal phases of wound healing; a complex process involving different dynamic events including migration of keratinocytes in the epidermis. Chronic wounds are estimated to affect 1-2% of the human population worldwide and are a major socioeconomic burden. The prevalence of chronic wounds is expected to increase with the rising number of elderly and patients with diabetes and obesity, who are at high risk of developing chronic wounds. Since E-cadherin and the water channel aquaporin-3 are important for both skin function and cell migration, and aquaporin-3 is furthermore involved in wound healing of the skin demonstrated by impaired wound healing in aquaporin-3-null mice, we hypothesized that E-cadherin and aquaporin-3 expression may be dysregulated in chronic wounds. Therefore, we investigated the expression of E-cadherin and aquaporin-3 in biopsies from the edges of chronic wounds from human patients. This was accomplished by immunohistochemical stainings of E-cadherin and aquaporin-3 on serial sections followed by qualitative evaluation of staining patterns, which revealed low expression of both E-cadherin and aquaporin-3 at the wound edge. Future studies are needed to reveal if this downregulation is associated with the pathophysiology of chronic wounds.


Assuntos
Aquaporina 3 , Pele , Idoso , Animais , Humanos , Camundongos , Aquaporina 3/genética , Aquaporina 3/metabolismo , Caderinas/genética , Queratinócitos/metabolismo , Queratinócitos/patologia , Pele/patologia , Cicatrização/fisiologia
4.
J Invest Dermatol ; 143(10): 2030-2038.e6, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37085040

RESUMO

It is currently unknown whether alterations in the skin microbiome exist before development of atopic dermatitis (AD). In this prospective Danish birth cohort of 300 children, we examined whether skin microbiome alterations during the first 2 months of life were associated with an increased risk of AD in the first 2 years and its severity after adjustment for environmental factors and selected skin chemokine and natural moisturizing factor levels. We found no overall association between the skin microbiome at birth and age 2 months and AD during the first 2 years of life. However, when restricting the analysis to children with at least one parent with atopy, a lower alpha diversity at age 2 months was associated with an increased risk of AD (adjusted hazard ratio = 1.7, 95% confidence interval = 1.1-2.6). We observed a stronger association in children where both parents had atopy (adjusted hazard ratio = 4.4, 95% confidence interval = 1.1-18.2). The putative pathogenic role of changes in the skin microbiome on AD risk remains uncertain but may play a role in those with an atopic predisposition.


Assuntos
Dermatite Atópica , Microbiota , Recém-Nascido , Humanos , Lactente , Criança , Dermatite Atópica/epidemiologia , Dermatite Atópica/etiologia , Estudos Prospectivos , Pele , Pais
5.
J Invest Dermatol ; 143(9): 1757-1768.e3, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36889662

RESUMO

Staphylococcus aureus is suspected to fuel disease activity in cutaneous T-cell lymphomas. In this study, we investigate the effect of a recombinant, antibacterial protein, endolysin (XZ.700), on S. aureus skin colonization and malignant T-cell activation. We show that endolysin strongly inhibits the proliferation of S. aureus isolated from cutaneous T-cell lymphoma skin and significantly decreases S. aureus bacterial cell counts in a dose-dependent manner. Likewise, ex vivo colonization of both healthy and lesional skin by S. aureus is profoundly inhibited by endolysin. Moreover, endolysin inhibits the patient-derived S. aureus induction of IFNγ and the IFNγ-inducible chemokine CXCL10 in healthy skin. Whereas patient-derived S. aureus stimulates activation and proliferation of malignant T cells in vitro through an indirect mechanism involving nonmalignant T cells, endolysin strongly inhibits the effects of S. aureus on activation (reduced CD25 and signal transducer and activator of transcription 5 phosphorylation) and proliferation (reduced Ki-67) of malignant T cells and cell lines in the presence of nonmalignant T cells. Taken together, we provide evidence that endolysin XZ.700 inhibits skin colonization, chemokine expression, and proliferation of pathogenic S. aureus and blocks their potential tumor-promoting effects on malignant T cells.


Assuntos
Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Linfoma Cutâneo de Células T/tratamento farmacológico , Proteínas Recombinantes , Linfócitos T , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/microbiologia
6.
BMJ Open ; 13(2): e068395, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36806068

RESUMO

INTRODUCTION: Lesional skin of atopic dermatitis (AD) is often colonised by Staphylococcus aureus and the bacterial abundance increases during a flare. However, the role of S. aureus and the skin microbiome in the pathogenesis of AD, including its influence on the dysfunctional skin barrier and immune response, remains to be elucidated. In this study, the temporal relationship between alterations in the skin barrier function, inflammation and microbiome is examined in adults with AD. METHODS AND ANALYSIS: This clinical study consists of 81 adult patients with AD, as defined by the Hanifin and Rajka criteria, and 41 age and sex-matched controls. The objectives are to examine alterations in the skin microbiome, skin barrier and immune response during (1) an untreated AD flare, (2) an AD flare treated with topical corticosteroids (TCS), (3) an AD flare treated with systemic dicloxacillin/placebo and TCS or (4) cutaneous exposure to either autologous S. aureus, staphylococcal enterotoxin B or a vehicle. Skin biopsies, tape strips, skin and nasal swabs are collected and analysed using RNA sequencing, multiplex immunoassays, liquid chromatography-mass spectrometry and 16S rDNA. Blood samples are analysed for filaggrin gene mutations and leucocyte gene expression. ETHICS AND DISSEMINATION: The scientific Ethical Committee of the Capital Region in Denmark (phases I and II: H-20011047, phases III and IV: H-21079287), the local data protection agency (phases I and II: P-2020-165, phases III and IV: P-2022-250) and the Danish Medicines Agency (phases III and IV: EudraCT 2021-006883-25, ClinicalTrials.gov: NCT05578482) have approved the studies. Participants will give written informed consent prior to study initiation. The study is conducted in accordance with the Helsinki Declaration. Outcomes will be presented at national and international conferences and in international peer-reviewed publications. TRIAL REGISTRATION NUMBER: NCT05578482, EudraCT 2021-006883-2.


Assuntos
Dermatite Atópica , Adulto , Humanos , Dermatite Atópica/tratamento farmacológico , Staphylococcus aureus , Pele , Imunidade , Dinamarca
7.
Lab Anim ; 57(3): 304-318, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36369654

RESUMO

Pig skin is commonly used in the medical industry as an injection model due to its compelling physiological affinity to human skin. However, the pig neck skin microflora remains largely uncharacterized, which may have undesirable implications for the translatability of results to humans. This study aimed to characterize pig neck skin microbiome with direct comparison with human skin microflora at emblematic injection sites to appraise its suitability as an injection model. Ten minipigs were sampled with tape strips and swabs and analysed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and 16S/ITS high throughput sequencing and confocal laser scanning microscopy. Results were directly compared with previous investigations of human injection sites. Pig skin was dominated by phyla 94.8% Firmicutes, 3% Proteobacteria, and 2.2% Actinobacteria. Staphylococcus spp. prevailed (44.4%) at the genus level with S. capitis and S. chromogenes present in all samples. Pig skin revealed populations in the 104 colony-forming units (CFU)/cm2 range with 3% identified as Gram-negative and increased alpha diversity (compared with 102 CFU/cm2 and 10% in humans). While notable taxonomical differences on species levels were seen, pig skin encompassed 97.1% of genera found in human samples. The increased population and variation found support the pig neck as an imperfect but fidelitous subcutaneous injection model that can adequately challenge devices from a microbial standpoint.


Assuntos
Microbiota , Suínos , Animais , Humanos , Porco Miniatura , Microbiota/fisiologia , Injeções Subcutâneas , RNA Ribossômico 16S
8.
APMIS ; 130(8): 515-523, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35460117

RESUMO

Infective endocarditis (IE) is a serious infection of the inner surface of heart, resulting from minor lesions in the endocardium. The damage induces a healing reaction, which leads to recruitment of fibrin and immune cells. This sterile healing vegetation can be colonized during temporary bacteremia, inducing IE. We have previously established a novel in vitro IE model using a simulated IE vegetation (IEV) model produced from whole venous blood, on which we achieved stable bacterial colonization after 24 h. The bacteria were organized in biofilm aggregates and displayed increased tolerance toward antibiotics. In this current study, we aimed at further characterizing the time course of biofilm formation and the impact on antibiotic tolerance development. We found that a Staphylococcus aureus reference strain, as well as three clinical IE isolates formed biofilms on the IEV after 6 h. When treatment was initiated immediately after infection, the antibiotic effect was significantly higher than when treatment was started after the biofilm was allowed to mature. We could follow the biofilm development microscopically by visualizing growing bacterial aggregates on the IEV. The findings indicate that mature, antibiotic-tolerant biofilms can be formed in our model already after 6 h, accelerating the screening for optimal treatment strategies for IE.


Assuntos
Endocardite Bacteriana , Endocardite , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Biofilmes , Endocardite/tratamento farmacológico , Endocardite Bacteriana/tratamento farmacológico , Endocardite Bacteriana/microbiologia , Humanos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
9.
APMIS ; 130(7): 404-416, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35460122

RESUMO

Needle reuse is a common practice and primary cause of customer compliance issues such as pain, bruising, clogging, injection site reactions (ISR), and associated lipodystrophy. This study aimed to characterize skin microflora at injection sites and establish microbial contamination of used pen injectors and needles. The second objective was to evaluate the risk of infections during typical and repeated subcutaneous injections. 50 participants with diabetes and 50 controls (n = 100) were sampled through tape strips and skin swabs on the abdomen and thigh for skin microflora. Used pen injectors and needles were collected after in-home use and from the hospital after drug administration by health care professionals (HCPs). Samples were analyzed by conventional culture, matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF), mass spectrometry (MS), confocal laser scanning microscopy (CLSM), and 16S/ITS high throughput sequencing (HTS). A mathematical model simulated the risk of needle contamination during injections. Injection site populations were in 102 cells/cm2 order, with increased viable bacteria and anaerobic bacteria on the skin in persons with diabetes (p = 0.05). Interpersonal variation dominated other factors such as sex or location. A higher prevalence of Staphylococcus aureus on abdominal skin was found in persons with diabetes than control skin (p ≤ 0.05). Most needles and cartridges (95% and 86%) contained no biological signal. The location of the device collection (hospital vs home-use) and use regimen did not affect contamination. CLSM revealed scarcely populated skin microflora scattered in aggregates, diplo, or single cells. Our mathematical model demonstrated that penetrating bacteria colonies during subcutaneous injection is unlikely. These findings clarify the lack of documented skin infections from subcutaneous insulin injections in research. Furthermore, these results can motivate the innovation and development of durable, reusable injection systems with pharmacoeconomic value and a simplified and enhanced user experience for patients.


Assuntos
Diabetes Mellitus , Agulhas , Humanos , Injeções Subcutâneas , Insulina , Pele
10.
APMIS ; 130(12): 706-718, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34919288

RESUMO

Cutaneous microbial composition is driven by the microenvironment of the skin, as well as by internal and external factors. Local changes in the microenvironment can affect the configuration of the community, which may lead toward an imbalance of microbiota. Alterations in the microbial profile are common in both inflammatory skin diseases and chronic infections. A shift in balance within the microbiota, toward limited variation and a greater abundance of specific pathogens, may further worsen the pathogenicity of the diseases. These alterations may be prevented by topical treatment of probiotic solutions stimulating a balanced multispecies community. Compositional variations may further constitute potential biomarkers to predict flares or monitor efficacy during therapy. New approaches such as machine learning may contribute to this prediction of microbial alterations prior to the development of chronic infections and flares. This review provides insight into the composition and distribution of a healthy community of microorganisms in the skin and draws parallels with the community in chronic infections and chronic inflammatory skin diseases such acne vulgaris and Hidradenitis Suppurativa. We discuss the potential role of specific species in the pathogenesis and the possible prevention of disease exacerbation.


Assuntos
Acne Vulgar , Microbiota , Humanos , Disbiose , Pele
11.
APMIS ; 129(12): 665-674, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34587324

RESUMO

Post-surgical infections arise due to various contributing factors. Most important is the presence of potential pathogenic microorganisms in the skin complemented by the patient´s health status. Cutibacterium acnes is commonly present in the pilosebaceous glands and hair follicle funnels in human skin. After surgical intervention, these highly prevalent, slow-growing bacteria can be found in the deeper tissues and in proximity of implants. C. acnes is frequently implicated in post-surgical infections, often resulting in the need for revision surgery. This review summarizes the current understanding of microbial dynamics in shoulder surgical infections. In particular, we shed light on the contribution of C. acnes to post-surgical shoulder infections as well as their colonization and immune-modulatory potential. Despite being persistently found in post-surgical tissues, C. acnes is often underestimated as a causative organism due to its slow growth and the inefficient detection methods. We discuss the role of the skin environment constituted by microbial composition and host cellular status in influencing C. acnes recolonization potential. Future mapping of the individual skin microbiome in shoulder surgery patients using advanced molecular methods would be a useful approach for determining the risk of post-operative infections.


Assuntos
Infecções por Bactérias Gram-Positivas/etiologia , Microbiota , Propionibacteriaceae/isolamento & purificação , Ombro/cirurgia , Pele/microbiologia , Infecção da Ferida Cirúrgica/etiologia , Humanos , Infecção da Ferida Cirúrgica/microbiologia
12.
J Med Microbiol ; 70(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33410733

RESUMO

In recent decades there has been an increase in knowledge of the distribution, species diversity and growth patterns of bacteria in human chronic infections. This has challenged standard diagnostic methods, which have undergone a development to both increase the accuracy of testing as well as to decrease the occurrence of contamination. In particular, the introduction of new technologies based on molecular techniques into the clinical diagnostic process has increased detection and identification of infectious pathogens. Sampling is the first step in the diagnostic process, making it crucial for obtaining a successful outcome. However, sampling methods have not developed at the same speed as molecular identification. The heterogeneous distribution and potentially small number of pathogenic bacterial cells in chronic infected tissue makes sampling a complicated task, and samples must be collected judiciously and handled with care. Clinical sampling is a step in the diagnostic process that may benefit from innovative methods based on current knowledge of bacteria present in chronic infections. In the present review, we describe and discuss different aspects that complicate sampling of chronic infections. The purpose is to survey representative scientific work investigating the presence and distribution of bacteria in chronic infections in relation to various clinical sampling methods.


Assuntos
Bactérias/isolamento & purificação , Infecções Bacterianas/diagnóstico , Doença Crônica , Manejo de Espécimes , Biofilmes , Humanos , Biópsia Líquida , Infecções Relacionadas à Prótese/diagnóstico
13.
Med Microbiol Immunol ; 209(6): 669-680, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32880037

RESUMO

The ability of bacteria to aggregate and form biofilms impairs phagocytosis by polymorphonuclear leukocytes (PMNs). The aim of this study was to examine if the size of aggregates is critical for successful phagocytosis and how bacterial biofilms evade phagocytosis. We investigated the live interaction between PMNs and Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Staphylococcus epidermidis using confocal scanning laser microscopy. Aggregate size significantly affected phagocytosis outcome and larger aggregates were less likely to be phagocytized. Aggregates of S. epidermidis were also less likely to be phagocytized than equally-sized aggregates of the other three species. We found that only aggregates of approx. 5 µm diameter or smaller were consistently phagocytosed. We demonstrate that planktonic and aggregated cells of all four species significantly reduced the viability of PMNs after 4 h of incubation. Our results indicate that larger bacterial aggregates are less likely to be phagocytosed by PMNs and we propose that, if the aggregates become too large, circulating PMNs may not be able to phagocytose them quickly enough, which may lead to chronic infection.


Assuntos
Biofilmes , Escherichia coli/fisiologia , Neutrófilos/fisiologia , Fagocitose , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/fisiologia , Escherichia coli/ultraestrutura , Humanos , Pseudomonas aeruginosa/ultraestrutura , Pele/microbiologia , Staphylococcus aureus/ultraestrutura , Staphylococcus epidermidis/ultraestrutura
14.
mBio ; 11(1)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047129

RESUMO

Human skin microbiota has been described as a "microbial fingerprint" due to observed differences between individuals. Current understanding of the cutaneous microbiota is based on sampling the outermost layers of the epidermis, while the microbiota in the remaining skin layers has not yet been fully characterized. Environmental conditions can vary drastically between the cutaneous compartments and give rise to unique communities. We demonstrate that the dermal microbiota is surprisingly similar among individuals and contains a specific subset of the epidermal microbiota. Variability in bacterial community composition decreased significantly from the epidermal to the dermal compartment but was similar among anatomic locations (hip and knee). The composition of the epidermal microbiota was more strongly affected by environmental factors than that of the dermal community. These results indicate a well-conserved dermal community that is functionally distinct from the epidermal community, challenging the current dogma. Future studies in cutaneous disorders and chronic infections may benefit by focusing on the dermal microbiota as a persistent microbial community.IMPORTANCE Human skin microbiota is thought to be unique according to the individual's lifestyle and genetic predisposition. This is true for the epidermal microbiota, while our findings demonstrate that the dermal microbiota is universal between healthy individuals. The preserved dermal microbial community is compositionally unique and functionally distinct to the specific environment in the depth of human skin. It is expected to have direct contact with the immune response of the human host, and research in the communication between host and microbiota should be targeted to this cutaneous compartment. This novel insight into specific microbial adaptation can be used advantageously in the research of chronic disorders and infections of the skin. It can enlighten the alteration between health and disease to the benefit of patients suffering from long-lasting socioeconomic illnesses.


Assuntos
Derme/microbiologia , Microbiota , Pele/microbiologia , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Adv Wound Care (New Rochelle) ; 8(10): 487-498, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31456906

RESUMO

Objective: Relevant animal models to study effects of bacterial aggregates on wound healing are lacking. We aimed at establishing an equine wound model with bacterial aggregates to investigate the impact of bacterial inoculation on normal (thorax) and impaired (limb) wound healing. Approach: Wounds were created on three limbs and both thorax sides of six horses. Twelve out of 20 wounds per horse were inoculated with 104 Staphylococcus aureus and 105 Pseudomonas aeruginosa on day 4. Healing was monitored until day 27 by clinical assessment, including wound scoring, surface pH measurements, and digital photography for area determination. Biopsies were used for bacterial culture and for peptide nucleic acid fluorescence in situ hybridization to detect bacterial aggregates. Results: Inoculated limb wounds healed slower than noninoculated limb wounds from day 10 onward (p < 0.0001). Inoculated and noninoculated thorax wounds healed equally well and faster than limb wounds. The odds ratio of detecting bacterial aggregates in inoculated limb wounds was 7.1 (2.4-21.0, p = 0.0086) compared with noninoculated limb wounds and 36.2 (3.8-348, p = 0.0018) compared with thorax wounds. Innovation: This equine wound model with bacterial aggregates might be superior to other animal wound models, as both normal and impaired healing can be studied simultaneously. In this model, many aspects of wound healing, including novel treatments, may be studied. Conclusions: The impaired healing observed in inoculated limb wounds may be related to the persistent bacterial aggregates. Both in capability of clearing inoculated bacteria from the wounds and in healing pattern, thorax wounds were superior to limb wounds.

17.
Adv Wound Care (New Rochelle) ; 7(4): 105-113, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29675336

RESUMO

Objective: The bacterial composition and distribution were evaluated in acute standardized epidermal wounds and uninjured skin by a molecular in situ technology benchmarked to conventional culturing. This was done to reveal whether bacterial biofilm is present in acute wounds. Approach: On the buttock of 26 healthy volunteers, 28 suction blisters were made and de-roofed. Four wounds were biopsied immediately after wounding, whereas the remaining 24 wounds were treated daily with sterile deionized water and covered with a moisture-retaining dressing. On day 4 post-wounding, swabs were obtained for culturing from the wounds and adjacent skin, and the wounds including adjacent skin were excised. Tissue sections were stained with peptide nucleic acid (PNA) fluorescence in situ hybridization (FISH) probes, counterstained by 4',6-diamidino-2-phenylindole, and evaluated by confocal laser scanning microscopy (CLSM). Results: No bacterial aggregates were detected at day 0. At day 4, coagulase-negative staphylococci (CoNS) were the sole bacteria identified by CLSM/PNA-FISH and culturing. CoNS was isolated from 78% of the wound swabs and 48% of the skin swabs. Bacterial aggregates (5-150 µm) were detected by PNA-FISH/CLSM in the split stratum corneum and fibrin deposits at the wound edges and in the stratum corneum and the hair follicles of the adjacent skin. The bacterial aggregates were more common (p = 0.0084) and larger (p = 0.0083) at wound edges than in the adjacent skin. Innovation: Bacterial aggregates can establish in all wound types and may have clinical significance in acute wounds. Conclusion: Bacterial aggregates were observed at the edges of acute epidermal wounds, indicating initiated establishment of a biofilm.

18.
JAMA Dermatol ; 153(9): 897-905, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538949

RESUMO

Importance: Although the pathogenesis of hidradenitis suppurativa (HS) remains enigmatic, several factors point to potential involvement of the cutaneous microbiome. Insight into the cutaneous microbiome in HS using next-generation sequencing may provide novel data on the microbiological diversity of the skin. Objective: To investigate the follicular skin microbiome in patients with HS and in healthy controls. Design, Setting, and Participants: This case-control study obtained punch biopsy specimens from patients with HS (lesional and nonlesional) and healthy controls between October 1, 2014, and August 1, 2016. Data were analyzed from March to November 2016. Patients with HS were recruited from the Department of Dermatology, Zealand University Hospital, Roskilde, Denmark. Biopsy specimens were analyzed at the Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark. None of the participants received any antibiotics (systemic or topical therapy) within 1 month before the study. In patients with HS, biopsy specimens were obtained from lesional skin (axilla or groin) and nonlesional skin. Only nodules containing at least 1 visible hair follicle were biopsied. Biopsy specimens from healthy controls were obtained from the axilla only. Main Outcomes and Measures: The different microbiomes were investigated using next-generation sequencing targeting 16S and 18S ribosomal RNA. Results: The skin microbiome was characterized in 30 patients with HS (mean [SD] age, 46.9 [14.0] years; 19 [63% female]) and 24 healthy controls (mean [SD] age, 32.2 [12.0] years; 13 [54% female]). The next-generation sequencing data provided a previously unreported (to our knowledge) characterization of the skin microbiome in HS. The study demonstrated that the microbiome in HS differs significantly from that in healthy controls in lesional and nonlesional skin. Overall, the following 5 microbiome types were identified: Corynebacterium species (type I), Acinetobacter and Moraxella species (type II), Staphylococcus epidermidis (type III), Porphyromonas and Peptoniphilus species (type IV), and Propionibacterium acnes (type V). In lesional skin, microbiome types consisted predominantly of type I or type IV. Microbiome type IV was not detected in healthy controls. Several taxa, including Propionibacterium, showed a significantly higher relative abundance in healthy controls vs HS skin, indicating that Propionibacterium may be part of the pathogenesis in HS. Conclusions and Relevance: The study findings suggest a link between a dysbiotic cutaneous microbiome and HS.


Assuntos
Hidradenite Supurativa/microbiologia , Microbiota , Pele/microbiologia , Adulto , Bactérias/genética , Estudos de Casos e Controles , DNA Bacteriano/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA
19.
Exp Dermatol ; 26(10): 943-945, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28266778

RESUMO

Although peptide nucleic acid (PNA), fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM) are the reference tools in the study of bacterial aggregates/biofilms, it may also be rather time-consuming. This study aimed to investigate the sensitivity and specificity between bacterial aggregates identified by haematoxylin and eosin (HE) staining vs bacterial aggregates in corresponding PNA-FISH samples. Axillary biopsies were obtained in 24 healthy controls. HE-stained and PNA-FISH samples were investigated using traditional light microscopy and CLSM, respectively. The data demonstrate that HE staining identifies large bacterial aggregates (>10 µm) with a sensitivity of 0.43 and specificity of 1. The methods, however, are not equivalent as demonstrated by a McNemar's test (P=.04). Where bacterial aggregates >10 µm in diameter, HE staining may offer a rapid and practical low-cost tool to evaluate bacterial aggregates.


Assuntos
Bactérias , Corantes , Amarelo de Eosina-(YS) , Hematoxilina , Pele/microbiologia , Pele/patologia , Axila , Fenômenos Fisiológicos Bacterianos , Biópsia , Humanos , Hibridização in Situ Fluorescente , Microscopia Confocal , Ácidos Nucleicos Peptídicos , Sensibilidade e Especificidade
20.
Acta Derm Venereol ; 97(2): 208-213, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-27377144

RESUMO

Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease defined by recurrent nodules, tunnels (sinus tracts) and scarring involving the intertriginous regions. The clinical course of HS is compatible with a biofilm-driven disease, and biofilm has been described in lesional HS skin. We therefore hypothesized that clinically unaffected HS skin would also have an increased presence of biofilm compared with that of healthy controls. We conducted a case-control study, investigating the morphology of the axillary skin microbiota. Peptide nucleic acid - fluorescence in situ hybridization probes were used in combination with confocal laser scanning microscopy. Significant differences were found in both distribution and quantity of the cutaneous microbiota in clinically non-affected axillary skin of patients with HS compared with healthy controls. Surprisingly, we detected fewer bacteria and less biofilm in patients with HS. The reduced microbiota in patients with HS may play an important role in the early course of the disease.


Assuntos
Biofilmes , Hidradenite Supurativa/microbiologia , Hidradenite Supurativa/patologia , Microbiota , Pele/microbiologia , Pele/patologia , Adolescente , Adulto , Axila , Biópsia , Estudos de Casos e Controles , Feminino , Hidradenite Supurativa/diagnóstico por imagem , Humanos , Hibridização in Situ Fluorescente , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Pele/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...