Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38980490

RESUMO

Urbanization, agriculture, and climate change affect water quality and water hyacinth growth in lakes. This study examines the spatiotemporal variability of lake surface water temperature, turbidity, and chlorophyll-a (Chl-a) and their association with water hyacinth biomass in Lake Tana. MODIS Land/ Lake surface water temperature (LSWT), Sentinel 2 MSI Imagery, and in-situ water quality data were used. Validation results revealed strong positive correlations between MODIS LSWT and on-site measured water temperature (R = 0.90), in-situ turbidity and normalized difference turbidity index (NDTI) (R = 0.92), and in-situ Chl-a and normalized difference chlorophyll index (NDCI) (R = 0.84). LSWT trends varied across the lake, with increasing trends in the northeastern, northwestern, and southwestern regions and decreasing trends in the western, southern, and central areas (2001-2022). The spatial average LSWT trend decreased significantly in pre-rainy (0.01 ℃/year), rainy (0.02 ℃/year), and post-rainy seasons (0.01℃/year) but increased non-significantly in the dry season (0.00 ℃/year) (2001-2022, P < 0.05). Spatial average turbidity decreased significantly in all seasons, except in the pre-rainy season (2016-2022). Likewise, spatial average Chl-a decreased significantly in pre-rainy and rainy seasons, whereas it showed a non-significant increasing trend in the dry and post-rainy seasons (2016-2022). Water hyacinth biomass was positively correlated with LSWT (R = 0.18) but negatively with turbidity (R = -0.33) and Chl-a (R = -0.35). High spatiotemporal variability was observed in LSWT, turbidity, and Chl-a, along with overall decreasing trends. The findings suggest integrated management strategies to balance water hyacinth eradication and its role in water purification. The results will be vital in decision support systems and preparing strategic plans for sustainable water resource management, environmental protection, and pollution prevention.

2.
Environ Sci Pollut Res Int ; 29(2): 2629-2641, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34374023

RESUMO

The aggravating deforestation, industrialization, and urbanization are becoming the principal causes for environmental challenges worldwide. As a result, satellite-based remote sensing helps to explore the environmental challenges spatially and temporally. This investigation analyzed the spatiotemporal variability in land surface temperature (LST) and its link with elevation in the Amhara region, Ethiopia. The Moderate Resolution Imaging Spectroradiometer (MODIS) LST data (2001-2020) were used. The pixel-based linear regression model was used to explore the spatiotemporal variability of LST changes. Furthermore, Sen's slope and Mann-Kendall trend test were used to determine the magnitude of temporal shifts of the areal average LST and evaluate trends in areal average LST, respectively. Coefficient of variation (CV) was also used to analyze spatial and temporal variability in seasonal and annual LST. The seasonal LST CV varied from 1.096-10.72%, 0.7-11.06%, 1.29-14.76%, and 2.19-10.35% for average autumn (September to November), summer (June to August), spring (March to May), and winter (December to February) seasons, respectively. The highest inter-annual variability was observed in the eastern, northern, and south-western districts than that in the other parts. The seasonal spatial LST trend varied from -0.7-0.16, -0.4-0.224, 0.6-0.19, and -0.6-0.32 for average autumn, summer, spring, and winter seasons, respectively. Besides, the annual spatial LST slope varied from -0.58 to 0.17. Negative slopes were found in the central, mid-western, and mid-northern districts in annual LST, unlike the other parts. The annual variations of mean areal LST decreased insignificantly at the rate of 0.046°C year-1 (P<0.05). However, the inter-annual variability trend of annual LST increased significantly. Generally, the LST is tremendously variable in space and time and negatively correlated with elevation.


Assuntos
Monitoramento Ambiental , Imagens de Satélites , Etiópia , Temperatura , Urbanização
3.
Glob Chall ; 5(7): 2000109, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34267925

RESUMO

The Blue Nile basin is one of the hot-spots of soil erosion areas in Ethiopia. However, the impact of land use changes on soil erosion is poorly understood in the Tagaw watershed. Hence, the objective of the study is to assess the impact of land use changes on soil erosion in Tagaw watershed over the last 31 years. Rainfall, soil, satellite images and topographic data are acquired from field survey and secondary sources. A Revised Universal Soil Loss Equation (RUSLE) model is used to estimate soil erosion. The mean annual and total potential soil losses of the watershed are 19.3, 22.9, 26 and 0.06-503.56, 0.11-516.67, and 0.00-543.5 tons ha-1 yr-1 for 1995, 2006 and 2016 respectively. The highest soil loss is found for bare land. The RUSLE model further showed that the highest soil erosion occurred in 2016 whereas the lowest soil erosion occurred in 1995.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...