Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38496416

RESUMO

The ADAT2/ADAT3 complex catalyzes the adenosine to inosine modification at the wobble position of eukaryotic tRNAs. Mutations in ADAT3 , the catalytically inactive subunit of the ADAT2/ADAT3 complex, have been identified in patients presenting with severe neurodevelopmental disorders (NDDs). Yet, the physiological function of ADAT2/ADAT3 complex during brain development remains totally unknown. Here we showed that maintaining a proper level of ADAT2/ADAT3 catalytic activity is required for correct radial migration of projection neurons in the developing mouse cortex. In addition, we not only reported 7 new NDD patients carrying biallelic variants in ADAT3 but also deeply characterize the impact of those variants on ADAT2/ADAT3 structure, biochemical properties, enzymatic activity and tRNAs editing and abundance. We demonstrated that all the identified variants alter both the expression and the activity of the complex leading to a significant decrease of I 34 with direct consequence on their steady-state. Using in vivo complementation assays, we correlated the severity of the migration phenotype with the degree of the loss of function caused by the variants. Altogether, our results indicate a critical role of ADAT2/ADAT3 during cortical development and provide cellular and molecular insights into the pathogenicity of ADAT3-related neurodevelopmental disorder.

2.
Nucleic Acids Res ; 49(11): 6529-6548, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34057470

RESUMO

Post-transcriptional modification of tRNA wobble adenosine into inosine is crucial for decoding multiple mRNA codons by a single tRNA. The eukaryotic wobble adenosine-to-inosine modification is catalysed by the ADAT (ADAT2/ADAT3) complex that modifies up to eight tRNAs, requiring a full tRNA for activity. Yet, ADAT catalytic mechanism and its implication in neurodevelopmental disorders remain poorly understood. Here, we have characterized mouse ADAT and provide the molecular basis for tRNAs deamination by ADAT2 as well as ADAT3 inactivation by loss of catalytic and tRNA-binding determinants. We show that tRNA binding and deamination can vary depending on the cognate tRNA but absolutely rely on the eukaryote-specific ADAT3 N-terminal domain. This domain can rotate with respect to the ADAT catalytic domain to present and position the tRNA anticodon-stem-loop correctly in ADAT2 active site. A founder mutation in the ADAT3 N-terminal domain, which causes intellectual disability, does not affect tRNA binding despite the structural changes it induces but most likely hinders optimal presentation of the tRNA anticodon-stem-loop to ADAT2.


Assuntos
Adenosina Desaminase/química , Adenosina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Movimento Celular , Cristalografia por Raios X , Ferredoxinas/química , Inosina/metabolismo , Camundongos , Modelos Moleculares , Mutação , Neurônios/fisiologia , Domínios Proteicos , RNA de Transferência/química , RNA de Transferência/metabolismo
3.
Development ; 148(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33531432

RESUMO

KIF2A is a kinesin motor protein with essential roles in neural progenitor division and axonal pruning during brain development. However, how different KIF2A alternative isoforms function during development of the cerebral cortex is not known. Here, we focus on three Kif2a isoforms expressed in the developing cortex. We show that Kif2a is essential for dendritic arborization in mice and that the functions of all three isoforms are sufficient for this process. Interestingly, only two of the isoforms can sustain radial migration of cortical neurons; a third isoform, lacking a key N-terminal region, is ineffective. By proximity-based interactome mapping for individual isoforms, we identify previously known KIF2A interactors, proteins localized to the mitotic spindle poles and, unexpectedly, also translation factors, ribonucleoproteins and proteins that are targeted to organelles, prominently to the mitochondria. In addition, we show that a KIF2A mutation, which causes brain malformations in humans, has extensive changes to its proximity-based interactome, with depletion of mitochondrial proteins identified in the wild-type KIF2A interactome. Our data raises new insights about the importance of alternative splice variants during brain development.


Assuntos
Diferenciação Celular/genética , Movimento Celular/genética , Regulação da Expressão Gênica , Cinesinas/genética , Neurônios/citologia , Neurônios/metabolismo , Proteínas Repressoras/genética , Processamento Alternativo , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Perfilação da Expressão Gênica , Cinesinas/metabolismo , Camundongos , Mutação , Neurogênese/genética , Proteômica/métodos , Isoformas de RNA , Proteínas Repressoras/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(44): E9308-E9317, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078390

RESUMO

The family of WD40-repeat (WDR) proteins is one of the largest in eukaryotes, but little is known about their function in brain development. Among 26 WDR genes assessed, we found 7 displaying a major impact in neuronal morphology when inactivated in mice. Remarkably, all seven genes showed corpus callosum defects, including thicker (Atg16l1, Coro1c, Dmxl2, and Herc1), thinner (Kif21b and Wdr89), or absent corpus callosum (Wdr47), revealing a common role for WDR genes in brain connectivity. We focused on the poorly studied WDR47 protein sharing structural homology with LIS1, which causes lissencephaly. In a dosage-dependent manner, mice lacking Wdr47 showed lethality, extensive fiber defects, microcephaly, thinner cortices, and sensory motor gating abnormalities. We showed that WDR47 shares functional characteristics with LIS1 and participates in key microtubule-mediated processes, including neural stem cell proliferation, radial migration, and growth cone dynamics. In absence of WDR47, the exhaustion of late cortical progenitors and the consequent decrease of neurogenesis together with the impaired survival of late-born neurons are likely yielding to the worsening of the microcephaly phenotype postnatally. Interestingly, the WDR47-specific C-terminal to LisH (CTLH) domain was associated with functions in autophagy described in mammals. Silencing WDR47 in hypothalamic GT1-7 neuronal cells and yeast models independently recapitulated these findings, showing conserved mechanisms. Finally, our data identified superior cervical ganglion-10 (SCG10) as an interacting partner of WDR47. Taken together, these results provide a starting point for studying the implications of WDR proteins in neuronal regulation of microtubules and autophagy.


Assuntos
Autofagia/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Repetições WD40/fisiologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Fenótipo , Células-Tronco/metabolismo , Células-Tronco/fisiologia
5.
eNeuro ; 4(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28303257

RESUMO

Calcium signaling controls many key processes in neurons, including gene expression, axon guidance, and synaptic plasticity. In contrast to calcium influx through voltage- or neurotransmitter-gated channels, regulatory pathways that control store-operated calcium entry (SOCE) in neurons are poorly understood. Here, we report a transcriptional control of Stim1 (stromal interaction molecule 1) gene, which is a major sensor of endoplasmic reticulum (ER) calcium levels and a regulator of SOCE. By using a genome-wide chromatin immunoprecipitation and sequencing approach in mice, we find that NEUROD2, a neurogenic transcription factor, binds to an intronic element within the Stim1 gene. We show that NEUROD2 limits Stim1 expression in cortical neurons and consequently fine-tunes the SOCE response upon depletion of ER calcium. Our findings reveal a novel mechanism that regulates neuronal calcium homeostasis during cortical development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Ciclo Celular , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Íntrons , Camundongos Endogâmicos BALB C , Proteínas Nucleares , Ligação Proteica , Fatores de Transcrição
6.
Genes Dev ; 30(19): 2199-2212, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798843

RESUMO

In order to understand whether early epigenetic mechanisms instruct the long-term behavior of neural stem cells (NSCs) and their progeny, we examined Uhrf1 (ubiquitin-like PHD ring finger-1; also known as Np95), as it is highly expressed in NSCs of the developing brain and rapidly down-regulated upon differentiation. Conditional deletion of Uhrf1 in the developing cerebral cortex resulted in rather normal proliferation and neurogenesis but severe postnatal neurodegeneration. During development, deletion of Uhrf1 lead to global DNA hypomethylation with a strong activation of the intracisternal A particle (IAP) family of endogenous retroviral elements, accompanied by an increase in 5-hydroxymethylcytosine. Down-regulation of Tet enzymes rescued the IAP activation in Uhrf1 conditional knockout (cKO) cells, suggesting an antagonistic interplay between Uhrf1 and Tet on IAP regulation. As IAP up-regulation persists into postnatal stages in the Uhrf1 cKO mice, our data show the lack of means to repress IAPs in differentiating neurons that normally never express Uhrf1 The high load of viral proteins and other transcriptional deregulation ultimately led to postnatal neurodegeneration. Taken together, these data show that early developmental NSC factors can have long-term effects in neuronal differentiation and survival. Moreover, they highlight how specific the consequences of widespread changes in DNA methylation are for certain classes of retroviral elements.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/fisiopatologia , Genes de Partícula A Intracisternal/genética , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Sobrevivência Celular/genética , Córtex Cerebral/embriologia , Metilação de DNA , Deleção de Genes , Camundongos , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/virologia , Ubiquitina-Proteína Ligases , Ativação Viral/genética
7.
BMC Genomics ; 16: 681, 2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26341353

RESUMO

BACKGROUND: Cellular differentiation programs are controlled, to a large extent, by the combinatorial functioning of specific transcription factors. Cortical projection neurons constitute the major excitatory neuron population within the cortex and mediate long distance communication between the cortex and other brain regions. Our understanding of effector transcription factors and their downstream transcriptional programs that direct the differentiation process of cortical projection neurons is far from complete. RESULTS: In this study, we carried out a ChIP-Seq (chromatin-immunoprecipitation and sequencing) analysis of NEUROD2, an effector transcription factor expressed in lineages of cortical projection neurons during the peak of cortical excitatory neurogenesis. Our results suggest that during cortical development NEUROD2 targets key genes that are required for Reelin signaling, a major pathway that regulates the migration of neurons from germinal zones to their final layers of residence within the cortex. We also find that NEUROD2 binds to a large set of genes with functions in layer-specific differentiation and in axonal pathfinding of cortical projection neurons. CONCLUSIONS: Our analysis of in vivo NEUROD2 target genes offers mechanistic insight into signaling pathways that regulate neuronal migration and axon guidance and identifies genes that are likely to be required for proper cortical development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Movimento Celular/genética , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Estudo de Associação Genômica Ampla , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Linhagem da Célula/genética , Córtex Cerebral/embriologia , Imunoprecipitação da Cromatina , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Modelos Biológicos , Neuropeptídeos/metabolismo , Ligação Proteica , Proteína Reelina
8.
Cell Stem Cell ; 7(6): 744-58, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21112568

RESUMO

Until now, limitations in the ability to enrich adult NSCs (aNSCs) have hampered meaningful analysis of these cells at the transcriptome level. Here we show via a split-Cre technology that coincident activity of the hGFAP and prominin1 promoters is a hallmark of aNSCs in vivo. Sorting of cells from the adult mouse subependymal zone (SEZ) based on their expression of GFAP and prominin1 isolates all self-renewing, multipotent stem cells at high purity. Comparison of the transcriptome of these purified aNSCs to parenchymal nonneurogenic astrocytes and other SEZ cells reveals aNSC hallmarks, including neuronal lineage priming and the importance of cilia- and Ca-dependent signaling pathways. Inducible deletion of the ciliary protein IFT88 in aNSCs validates the role of ciliary function in aNSCs. Our work reveals candidate molecular regulators for unique features of aNSCs and facilitates future selective analysis of aNSCs in other functional contexts, such as aging and injury.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Neurais/citologia , Células-Tronco Adultas/metabolismo , Animais , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...