Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585934

RESUMO

The infralimbic (IL) division of the medial prefrontal cortex (mPFC) is a crucial site for extinction of conditioned fear memories in rodents. Recent work suggests that neuronal plasticity in the IL that occurs during (or soon after) fear conditioning enables subsequent IL-dependent extinction learning. We therefore hypothesized that pharmacological activation of the IL after fear conditioning would promote the extinction of conditioned fear. To test this hypothesis, we characterized the effects of post-conditioning infusions of the GABAA receptor antagonist, picrotoxin, into the IL on extinction of auditory conditioned freezing in male and female rats. In four experiments, we found that picrotoxin injections performed immediately, 24 hours, or 13 days after fear conditioning reduced conditioned freezing to the auditory conditioned stimulus (CS) during both extinction training and extinction retrieval; this effect was observed up to two weeks after picrotoxin infusions. Interestingly, inhibiting protein synthesis inhibition in the IL immediately after fear conditioning prevented the inhibition of freezing by picrotoxin injected 24 hours later. Our data suggest that the IL encodes an inhibitory memory during the consolidation of fear conditioning that is necessary for future fear suppression.

2.
Front Behav Neurosci ; 18: 1352797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370858

RESUMO

The regulation of fear memories is critical for adaptive behaviors and dysregulation of these processes is implicated in trauma- and stress-related disorders. Treatments for these disorders include pharmacological interventions as well as exposure-based therapies, which rely upon extinction learning. Considerable attention has been directed toward elucidating the neural mechanisms underlying fear and extinction learning. In this review, we will discuss historic discoveries and emerging evidence on the neural mechanisms of the adaptive regulation of fear and extinction memories. We will focus on neural circuits regulating the acquisition and extinction of Pavlovian fear conditioning in rodent models, particularly the role of the medial prefrontal cortex and hippocampus in the contextual control of extinguished fear memories. We will also consider new work revealing an important role for the thalamic nucleus reuniens in the modulation of prefrontal-hippocampal interactions in extinction learning and memory. Finally, we will explore the effects of stress on this circuit and the clinical implications of these findings.

3.
J Neurosci ; 43(22): 4162-4173, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37127359

RESUMO

Stress has profound effects on fear extinction, a form of learning that is essential to behavioral therapies for trauma-related and stressor-related disorders. Recent work reveals that acute footshock stress reduces medial prefrontal cortex (mPFC) activity that is critical for extinction learning. Reductions in mPFC activity may be mediated by parvalbumin (PV)-containing interneurons via feedforward inhibition imposed by amygdala afferents. To test this hypothesis, footshock stress-induced Fos expression was characterized in PV+ and PV- neurons in the prelimbic (PL) and infralimbic (IL) cortices. Footshock stress increased the proportion of PV+ cells expressing Fos in both male and female rats; this effect was more pronounced in IL compared with PL. To determine whether PV+ interneurons in the mPFC mediate stress-induced extinction impairments, we chemogenetically silenced these neurons before an immediate extinction procedure in PV-Cre rats. Clozapine-N-oxide (CNO) did not affect conditioned freezing during the extinction procedure. However, CNO exacerbated extinction retrieval in both male and female rats with relatively high PL expression of designer receptors exclusively activated by designer drugs (DREADD). In contrast, in rats with relatively high IL DREADD expression, CNO produced a modest facilitation of extinction in the earliest retrieval trials, but in male rats only. Conversely, excitation of IL PV interneurons was sufficient to impair delayed extinction in both male and female rats. Finally, chemogenetic inhibition of IL-projecting amygdala neurons reduced the immediate extinction deficit in male, but not female rats. These results reveal that PV interneurons regulate extinction learning under stress in a sex-dependent manner, and this effect is mediated by amygdaloprefrontal projections.SIGNIFICANCE STATEMENT Stress significantly impairs the memory of fear extinction, a type of learning that is central to behavioral therapies for trauma-based and anxiety-based disorders (e.g., post-traumatic stress disorder). Here we show that acute footshock stress recruits parvalbumin (PV) interneurons in the medial prefrontal cortex (mPFC) of male and female rats. Silencing mPFC PV interneurons or mPFC-projecting amygdala neurons during immediate extinction influenced extinction retrieval in a sex-dependent manner. This work highlights the role for PV-containing mPFC interneurons in stress-induced impairments in extinction learning.


Assuntos
Medo , Parvalbuminas , Ratos , Animais , Masculino , Medo/fisiologia , Parvalbuminas/metabolismo , Extinção Psicológica/fisiologia , Interneurônios/metabolismo , Córtex Pré-Frontal/fisiologia
4.
Biol Psychiatry ; 91(9): 832-840, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35246314

RESUMO

BACKGROUND: In both rodents and humans, the basolateral amygdala (BLA) is essential for encoding and retrieving conditioned fear memories. Although the BLA is a putative storage site for these memories, recent evidence suggests that they become independent of the BLA with the passage of time. METHODS: We systematically examined the role for the BLA in the retrieval of recent (1 day) and remote (2 weeks) fear memory using optogenetic, electrophysiological, and calcium imaging methods in male and female Long-Evans rats. Critically, we used a behavioral design that permits within-subjects comparison of recent and remote memory at the same time point; freezing behavior served as the index of learned fear. RESULTS: We found that BLA c-Fos expression was similar after the retrieval of recent or remote fear memories. Extracellular single-unit recordings in awake, behaving animals revealed that single BLA neurons exhibit robust increases in spike firing to both recent and remote conditioned stimuli. Fiber photometry recordings revealed that these patterns of activity emerge from principal neurons. Consistent with these results, optogenetic inhibition of BLA principal neurons impaired conditioned freezing to both recent and remote conditioned stimuli. There were no sex differences in any of the measures or manipulations. CONCLUSIONS: These data reveal that BLA neurons encode both recent and remote fear memories, suggesting substantial overlap in the allocation of temporally distinct events. This may underlie the broad generalization of fear memories across both space and time. Ultimately, these results provide evidence that the BLA is a long-term storage site for emotional memories.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Medo/fisiologia , Feminino , Humanos , Masculino , Memória de Longo Prazo , Ratos , Ratos Long-Evans
5.
Neuropharmacology ; 205: 108913, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864001

RESUMO

Growing evidence indicates that cannabidiol (CBD), a substance present in the Cannabis sativa plant, has potential therapeutic value to regulate abnormal emotional memories associated with post-traumatic stress and drug use disorders. CBD can attenuate their valence after retrieval (i.e., during reconsolidation) or potentiate their suppression by extinction. Pharmacological research has now focused on elucidating how it acts. Systemic antagonism of cannabinoid type-1 (CB1) receptors has often prevented the abovementioned effects of CBD. However, it is unknown in which brain regions CBD stimulates CB1 receptors and how it interferes with local activity-related plasticity to produce these effects. The present study addressed these questions considering the reconsolidation of contextual fear memories in rats. We focused on the medial prefrontal cortex (mPFC), which comprises the anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) subregions, as local activity or plasticity has been associated with the process to-be-investigated. Animals that received post-retrieval systemic CBD treatment presented relatively fewer cells expressing Zif268/Egr1 protein, a proxy for synaptic plasticity related to reconsolidation, in the AC and PL. At the same time, there were no significant differences in the IL. Pretreatment with the CB1 receptor antagonist/inverse agonist AM251 into the AC, PL, or IL prevented the impairing effects of systemic CBD treatment on reconsolidation. CBD also caused reconsolidation impairments when injected directly into the AC or PL but not the IL. Together, these findings show complementary mechanisms through which CBD may hinder the reconsolidation of destabilized aversive memories along the dorsoventral axis of the mPFC.


Assuntos
Canabidiol/efeitos adversos , Agonistas de Receptores de Canabinoides/efeitos adversos , Antagonistas de Receptores de Canabinoides/farmacologia , Consolidação da Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Ratos , Receptor CB1 de Canabinoide/antagonistas & inibidores
6.
Sci Rep ; 10(1): 15827, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985565

RESUMO

Lesioning or inactivating the infralimbic (IL) subregion of the medial prefrontal cortex before acquisition produces more generalized and extinction-resistant fear memories. However, whether and how it modulates memory specificity and extinction susceptibility while consolidation takes place is still unknown. The present study aims to investigate these questions using muscimol-induced temporary inactivation and anisomycin-induced protein synthesis inhibition in the rat IL following contextual fear conditioning. Results indicate that the IL activity immediately after acquisition, but not six hours later, controls memory generalization over a week, regardless of its strength. Such IL function depends on the context-shock pairing since muscimol induced no changes in animals exposed to immediate shocks or the conditioning context only. Animals in which the IL was inactivated during consolidation extinguished similarly to controls within the session but were unable to recall the extinction memory the following day. Noteworthy, these post-acquisition IL inactivation-induced effects were not associated with changes in anxiety, as assessed in the elevated plus-maze test. Anisomycin results indicate that the IL protein synthesis during consolidation contributes more to producing extinction-sensitive fear memories than memory specificity. Collectively, present results provide evidence for the IL's role in controlling generalization and susceptibility to extinction during fear memory consolidation.


Assuntos
Extinção Psicológica/fisiologia , Medo/fisiologia , Generalização Psicológica/fisiologia , Lobo Límbico/fisiologia , Consolidação da Memória/fisiologia , Animais , Anisomicina/farmacologia , Condicionamento Clássico , Eletrodos Implantados , Generalização Psicológica/efeitos dos fármacos , Lobo Límbico/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Muscimol/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...